Willard Libby in the context of "Carbon-14"

Play Trivia Questions online!

or

Skip to study material about Willard Libby in the context of "Carbon-14"

Ad spacer

⭐ Core Definition: Willard Libby

Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contributions to the team that developed this process, Libby was awarded the Nobel Prize in Chemistry in 1960.

A 1931 chemistry graduate of the University of California, Berkeley, from which he received his doctorate in 1933, he studied radioactive elements and developed sensitive Geiger counters to measure weak natural and artificial radioactivity. During World War II he worked in the Manhattan Project's Substitute Alloy Materials (SAM) Laboratories at Columbia University, developing the gaseous diffusion process for uranium enrichment.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Willard Libby in the context of Carbon-14

Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

There are three naturally occurring isotopes of carbon on Earth: carbon-12 (C), which makes up 99% of all carbon on Earth; carbon-13 (C), which makes up 1%; and carbon-14 (C), which occurs in trace amounts, making up about 1.2 atoms per 10 atoms of carbon in the atmosphere. C and C are both stable; C is unstable, with half-life 5700±30 years, decaying into nitrogen-14 (
N
) through beta decay. Pure carbon-14 would have a specific activity of 62.4 mCi/mmol (2.31 GBq/mmol), or 164.9 GBq/g. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. Open-air nuclear testing between 1955 and 1980 contributed to this pool, however.

↓ Explore More Topics
In this Dossier

Willard Libby in the context of Radiocarbon dating

Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.

The method was developed in the late 1940s at the University of Chicago by Willard Libby. It is based on the fact that radiocarbon (
C
) is constantly being created in the Earth's atmosphere by the interaction of cosmic rays with atmospheric nitrogen. The resulting
C
combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire
C
by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and thereafter the amount of
C
it contains begins to decrease as the
C
undergoes radioactive decay. Measuring the amount of
C
in a sample from a dead plant or animal, such as a piece of wood or a fragment of bone, provides information that can be used to calculate when the animal or plant died. The older a sample is, the less
C
there is to be detected. The half-life of
C
(the period of time after which half of a given sample will have decayed) is about 5,730 years, so the oldest dates that can be reliably measured by this process date to approximately 50,000 years ago, although special preparation methods occasionally make an accurate analysis of older samples possible. Libby received the Nobel Prize in Chemistry for his work in 1960.

↑ Return to Menu