Nobel Prize in Chemistry in the context of "Radiocarbon dating"

⭐ In the context of radiocarbon dating, Willard Libby was awarded the Nobel Prize in Chemistry primarily for his contributions to understanding…

Ad spacer

⭐ Core Definition: Nobel Prize in Chemistry

The Nobel Prize in Chemistry is awarded annually by the Royal Swedish Academy of Sciences to scientists in the various fields of chemistry. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895, awarded for outstanding contributions in chemistry, physics, literature, peace, and physiology or medicine. This award is administered by the Nobel Foundation and awarded by the Royal Swedish Academy of Sciences on proposal of the Nobel Committee for Chemistry, which consists of five members elected by the academy. The award is presented in Stockholm at an annual ceremony on December 10, the anniversary of Nobel's death.

The first Nobel Prize in Chemistry was awarded in 1901 to Jacobus Henricus van 't Hoff, of the Netherlands, "for his discovery of the laws of chemical dynamics and osmotic pressure in solutions". From 1901 to 2024, the award has been bestowed on a total of 195 individuals. The 2024 Nobel Prize in Chemistry was awarded to Demis Hassabis and John Jumper for protein structure prediction and to David Baker for Computational Protein Design. As of 2022, eight women had won the prize: Marie Curie (1911), her daughter Irène Joliot-Curie (1935), Dorothy Hodgkin (1964), Ada Yonath (2009), Frances Arnold (2018), Emmanuelle Charpentier and Jennifer Doudna (2020), and Carolyn R. Bertozzi (2022).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Nobel Prize in Chemistry in the context of Radiocarbon dating

Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.

The method was developed in the late 1940s at the University of Chicago by Willard Libby. It is based on the fact that radiocarbon (
C
) is constantly being created in the Earth's atmosphere by the interaction of cosmic rays with atmospheric nitrogen. The resulting
C
combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire
C
by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and thereafter the amount of
C
it contains begins to decrease as the
C
undergoes radioactive decay. Measuring the amount of
C
in a sample from a dead plant or animal, such as a piece of wood or a fragment of bone, provides information that can be used to calculate when the animal or plant died. The older a sample is, the less
C
there is to be detected. The half-life of
C
(the period of time after which half of a given sample will have decayed) is about 5,730 years, so the oldest dates that can be reliably measured by this process date to approximately 50,000 years ago, although special preparation methods occasionally make an accurate analysis of older samples possible. Libby received the Nobel Prize in Chemistry for his work in 1960.

↓ Explore More Topics
In this Dossier

Nobel Prize in Chemistry in the context of Paul Crutzen

Paul Jozef Crutzen (Dutch pronunciation: [pʌul ˈjoːzəf ˈkrʏtsə(n)]; 3 December 1933 – 28 January 2021) was a Dutch meteorologist and atmospheric chemist. In 1995, he was awarded the Nobel Prize in Chemistry alongside Mario Molina and Frank Sherwood Rowland for their work on atmospheric chemistry and specifically for his efforts in studying the formation and decomposition of atmospheric ozone. In addition to studying the ozone layer and climate change, he popularized the term Anthropocene to describe a proposed new epoch in the Quaternary period when human actions have a drastic effect on the Earth. He was also amongst the first few scientists to introduce the idea of a nuclear winter to describe the potential climatic effects stemming from large-scale atmospheric pollution including smoke from forest fires, industrial exhausts, and other sources like oil fires.

He was a member of the Royal Swedish Academy of Sciences and an elected foreign member of the Royal Society in the United Kingdom.

↑ Return to Menu

Nobel Prize in Chemistry in the context of Biomolecule

A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids, and nucleic acids, as well as small molecules such as vitamins and hormones. A general name for this class of material is biological materials. Biomolecules are an important element of living organisms. They are often endogenous, i.e. produced within the organism, but organisms usually also need exogenous biomolecules, for example certain nutrients, to survive.

Biomolecules and their reactions are studied in biology and its subfields of biochemistry and molecular biology. Most biomolecules are organic compounds, and just four elements—oxygen, carbon, hydrogen, and nitrogen—make up 96% of the human body's mass. But many other elements, such as the various biometals, are also present in small amounts.

↑ Return to Menu

Nobel Prize in Chemistry in the context of Chlorella

Chlorella is a genus of about thirteen species of single-celled or colonial green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 Îźm in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and -b. In ideal conditions cells of Chlorella multiply rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of minerals to reproduce.

The name Chlorella is taken from the Greek χλώρος, chlōros/ khlōros, meaning green, and the Latin diminutive suffix -ella, meaning small. German biochemist and cell physiologist Otto Heinrich Warburg, awarded with the Nobel Prize in Physiology or Medicine in 1931 for his research on cell respiration, also studied photosynthesis in Chlorella. In 1961, Melvin Calvin of the University of California received the Nobel Prize in Chemistry for his research on the pathways of carbon dioxide assimilation in plants using Chlorella.

↑ Return to Menu

Nobel Prize in Chemistry in the context of Molecular machine

Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes. For the last several decades, scientists have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world.

The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a rotaxane with a ring and two different possible binding sites. In 2016 the Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines. A major point is to exploit existing motion in proteins, such as rotation about single bonds or cis-trans isomerization. Different AMMs are produced by introducing various functionalities, such as the introduction of bistability to create switches. A broad range of AMMs has been designed, featuring different properties and applications; some of these include molecular motors, switches, and logic gates. A wide range of applications have been demonstrated for AMMs, including those integrated into polymeric, liquid crystal, and crystalline systems for varied functions (such as materials research, homogenous catalysis and surface chemistry).

↑ Return to Menu

Nobel Prize in Chemistry in the context of Nobel Prize in Physics

The Nobel Prize in Physics is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895 and awarded since 1901, the others being the Nobel Prize in Chemistry, Nobel Prize in Literature, Nobel Peace Prize, and Nobel Prize in Physiology or Medicine.

The prize consists of a medal along with a diploma and a certificate for the monetary award. The front side of the medal displays the same profile of Alfred Nobel depicted on the medals for Physics, Chemistry, and Literature.

↑ Return to Menu

Nobel Prize in Chemistry in the context of Mario Molina

Mario José Molina-Pasquel Henríquez (19 March 1943 – 7 October 2020) was a Mexican physical chemist. He played a pivotal role in the discovery of the Antarctic ozone hole, and was a co-recipient of the 1995 Nobel Prize in Chemistry for his role in discovering the threat to the Earth's ozone layer from chlorofluorocarbon (CFC) gases. He was the first Mexican-born scientist to receive a Nobel Prize in Chemistry and the third Mexican-born person to receive a Nobel prize.

In his career, Molina held research and teaching positions at University of California, Irvine, California Institute of Technology, Massachusetts Institute of Technology, University of California, San Diego, and the Center for Atmospheric Sciences at the Scripps Institution of Oceanography. Molina was also Director of the Mario Molina Center for Energy and Environment in Mexico City. Molina was a climate policy advisor to the President of Mexico, Enrique PeĂąa Nieto.

↑ Return to Menu

Nobel Prize in Chemistry in the context of Nobel Peace Prize

The Nobel Peace Prize is one of the five Nobel Prizes established by the will of Swedish industrialist, inventor, and armaments manufacturer Alfred Nobel, along with the prizes in Chemistry, Physics, Physiology or Medicine, and Literature.

Since March 1901, it has been awarded annually (with some exceptions) to people who have "done the most or the best work for fraternity between nations, for the abolition or reduction of standing armies and for the holding and promotion of peace congresses". The Oxford Dictionary of Contemporary History describes it as "the most prestigious prize in the world".

↑ Return to Menu