Gaseous diffusion in the context of "Willard Libby"

Play Trivia Questions online!

or

Skip to study material about Gaseous diffusion in the context of "Willard Libby"

Ad spacer

⭐ Core Definition: Gaseous diffusion

Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containing uranium-235 (U) and uranium-238 (U). By use of a large cascade of many stages, high separations can be achieved. It was the first process to be developed that was capable of producing enriched uranium in industrially useful quantities, but is nowadays considered obsolete, having been superseded by the more-efficient gas centrifuge process (enrichment factor 1.05 to 1.2).

Gaseous diffusion was devised by Francis Simon and Nicholas Kurti at the Clarendon Laboratory in 1940, tasked by the MAUD Committee with finding a method for separating uranium-235 from uranium-238 in order to produce a bomb for the British Tube Alloys project. The prototype gaseous diffusion equipment itself was manufactured by Metropolitan-Vickers (MetroVick) at Trafford Park, Manchester, at a cost of £150,000 for four units (est. £10–11 million today), for the M. S. Factory, Valley. This work was later transferred to the United States when the Tube Alloys project became subsumed by the later Manhattan Project.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Gaseous diffusion in the context of Willard Libby

Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contributions to the team that developed this process, Libby was awarded the Nobel Prize in Chemistry in 1960.

A 1931 chemistry graduate of the University of California, Berkeley, from which he received his doctorate in 1933, he studied radioactive elements and developed sensitive Geiger counters to measure weak natural and artificial radioactivity. During World War II he worked in the Manhattan Project's Substitute Alloy Materials (SAM) Laboratories at Columbia University, developing the gaseous diffusion process for uranium enrichment.

↓ Explore More Topics
In this Dossier

Gaseous diffusion in the context of Gas centrifuge

A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centrifugal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radius of a rotating container.

A prominent use of gas centrifuges is for the separation of uranium-235 (U) from uranium-238 (U). The gas centrifuge was developed to replace the gaseous diffusion method of U extraction. High degrees of separation of these isotopes relies on using many individual centrifuges arranged in series that achieve successively higher concentrations. This process yields higher concentrations of U while using significantly less energy compared to the gaseous diffusion process.

↑ Return to Menu