Virtual reality in the context of "Drawing"

⭐ In the context of drawing, virtual reality is considered a platform for utilizing what types of modern tools?

Ad spacer

⭐ Core Definition: Virtual reality

Virtual reality (VR) is a simulated experience that employs 3D near-eye displays and pose tracking to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), education (such as medical, safety, or military training), research and business (such as virtual meetings). VR is one of the key technologies in the reality-virtuality continuum. As such, it is different from other digital visualization solutions, such as augmented virtuality and augmented reality.

Currently, standard virtual reality systems use either virtual reality headsets or multi-projected environments to generate some realistic images, sounds, and other sensations that simulate a user's physical presence in a virtual environment. A person using virtual reality equipment is able to look around the artificial world, move around in it, and interact with virtual features or items. The effect is commonly created by VR headsets consisting of a head-mounted display with a small screen in front of the eyes but can also be created through specially designed rooms with multiple large screens. Virtual reality typically incorporates auditory and video feedback but may also allow other types of sensory and force feedback through haptic technology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Virtual reality in the context of Drawing

Drawing is a visual art that uses an instrument to mark paper or another two-dimensional surface, or a digital representation of such. Traditionally, the instruments used to create a drawing include pencils, crayons, and ink pens, sometimes in combination. More modern tools include computer styluses with mice and graphics tablets and gamepads in VR drawing software.

A drawing instrument releases a small amount of material onto a surface, leaving a visible mark. There are many drawing instruments such as pen, pencils, pastel, crayons, markers, color pencils, water color, and more. The most common support for drawing is paper, although other materials, such as cardboard, vellum, wood, plastic, leather, canvas, and board, have been used. Temporary drawings may be made on a blackboard or whiteboard. Drawing has been a popular and fundamental means of public expression throughout human history. It is one of the simplest and most efficient means of communicating ideas. The wide availability of drawing instruments makes drawing one of the most common artistic activities.

↓ Explore More Topics
In this Dossier

Virtual reality in the context of Video game

A video game, computer game, or simply game, is an electronic game that involves interaction with a user interface or input device (such as a joystick, controller, keyboard, or motion sensing device) to generate visual feedback from a display device, most commonly shown in a video format on a television set, computer monitor, flat-panel display or touchscreen on handheld devices, or a virtual reality headset. Most modern video games are audiovisual, with audio complement delivered through speakers or headphones, and sometimes also with other types of sensory feedback (e.g., haptic technology that provides tactile sensations). Some video games also allow microphone and webcam inputs for in-game chatting and livestreaming.

Video games are typically categorized according to their hardware platform, which traditionally includes arcade video games, console games, and computer games (which includes LAN games, online games, and browser games). More recently, the video game industry has expanded onto mobile gaming through mobile devices (such as smartphones and tablet computers), virtual and augmented reality systems, and remote cloud gaming. Video games are also classified into a wide range of genres based on their style of gameplay and target audience.

↑ Return to Menu

Virtual reality in the context of Interactive media

Interactive media refers to digital experiences that dynamically respond to user input, delivering content such as text, images, animations, video, audio, and even AI-driven interactions. Over the years, interactive media has expanded across gaming, education, social platforms, and immersive technologies like VR and AR. With the rise of AI-generated content, decision-driven narratives, and real-time engagement, concerns have shifted toward cybersecurity risks, digital well-being, and the societal impact of hyper-personalized media.

↑ Return to Menu

Virtual reality in the context of Virtual reality headset

A virtual reality headset (VR headset) is a head-mounted device that uses 3D near-eye displays and positional tracking to provide a virtual reality environment for the user. VR headsets are widely used with VR video games, but they are also used in other applications, including simulators and trainers. VR headsets typically include a stereoscopic display (providing separate images for each eye), stereo sound, and sensors like accelerometers and gyroscopes for tracking the pose of the user's head to match the orientation of the virtual camera with the user's eye positions in the real world. Mixed reality (MR) headsets are VR headsets that enable the user to see and interact with the outside world. Examples of MR headsets include the Apple Vision Pro and Meta Quest 3.

VR headsets typically use at least one MEMS IMU for three degrees of freedom (3DOF) motion tracking, and optionally more tracking technology for six degrees of freedom (6DOF) motion tracking. 6DOF devices typically use a sensor fusion algorithm to merge the data from the IMU and any other tracking sources, typically either one or more external sensors, or "inside-out" tracking using outward facing cameras embedded in the headset. The sensor fusion algorithms that are used are often variants of a Kalman filter. VR headsets can support motion controllers, which similarly combine inputs from accelerometers and gyroscopes with the headset's motion tracking system.

↑ Return to Menu

Virtual reality in the context of Motion controller

In computing, a motion controller is a type of input device that uses accelerometers, gyroscopes, cameras, or other sensors to track motion.

Motion controllers see use as game controllers, for virtual reality and other simulation purposes, and as pointing devices for smart TVs and Personal computers.

↑ Return to Menu

Virtual reality in the context of 3D near-eye display

A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.

As of 2021, the most common type of 3D display is a stereoscopic display, which is the type of display used in almost all virtual reality equipment. 3D displays can be near-eye displays like in VR headsets, or they can be in a device further away from the eyes like a 3D-enabled mobile device or 3D movie theater.

↑ Return to Menu

Virtual reality in the context of Applications of virtual reality

There are many applications of virtual reality (VR). Applications have been developed in a variety of domains, such as architectural and urban design, industrial designs, restorative nature experiences, healthcare and clinical therapies, digital marketing and activism, education and training, engineering and robotics, entertainment, virtual communities, fine arts, heritage and archaeology, occupational safety, as well as social science and psychology.

Virtual Reality (VR) is revolutionizing industries by enabling immersive, interactive simulations that greatly improve the work of professionals in these industries. VR is changing how experts approach problems and come up with creative solutions in a variety of fields, including architecture and urban planning, where it helps visualize intricate structures and simulate entire cities, and healthcare and surgery, where it enhances accuracy and patient safety. As evidenced by successful collaborative operations using VR platforms, advancements in VR enable surgeons to train in risk-free environments and sketch out treatments customized for particular patients.

↑ Return to Menu

Virtual reality in the context of Reality–virtuality continuum

The reality-virtuality continuum is a theoretical framework that describes the continuous scale between the completely virtual, a virtuality, and the completely real, reality. The reality-virtuality continuum therefore encompasses all possible variations and compositions of real and virtual objects. It has been described as a concept in new media and computer science.

The concept was first introduced in 1994 by Paul Milgram, a professor at University of Toronto that pioneered wearable computing research. Since the inception of the continuum, scholars have argued the continuum should be updated to match the current state of wearable computing systems.

↑ Return to Menu

Virtual reality in the context of Augmented virtuality

Augmented reality (AR), also known as mixed reality (MR), is a technology that overlays real-time 3D-rendered computer graphics onto a portion of the real world through a display, such as a handheld device or head-mounted display. This experience is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment. In this way, augmented reality alters one's ongoing perception of a real-world environment, compared to virtual reality, which aims to completely replace the user's real-world environment with a simulated one. Augmented reality is typically visual, but can span multiple sensory modalities, including auditory, haptic, and somatosensory.

The primary value of augmented reality is the manner in which components of a digital world blend into a person's perception of the real world, through the integration of immersive sensations, which are perceived as real in the user's environment. The earliest functional AR systems that provided immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992. Commercial augmented reality experiences were first introduced in entertainment and gaming businesses. Subsequently, augmented reality applications have spanned industries such as education, communications, medicine, and entertainment.

↑ Return to Menu