Variable (programming) in the context of Scope (computer science)


Variable (programming) in the context of Scope (computer science)

Variable (programming) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Variable (programming) in the context of "Scope (computer science)"


⭐ Core Definition: Variable (programming)

In high-level programming, a variable is an abstract storage or indirection location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string, etc...) or undefined. A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.

Variables in programming may not directly correspond to the concept of variables in mathematics. The latter is abstract, having no reference to a physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Furthermore, the variables can also be constants if the value is defined statically. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation.

↓ Menu
HINT:

πŸ‘‰ Variable (programming) in the context of Scope (computer science)

In computer programming, the scope of a name binding (an association of a name to an entity, such as a variable) is the part of a program where the name binding is valid; that is, where the name can be used to refer to the entity. In other parts of the program, the name may refer to a different entity (it may have a different binding), or to nothing at all (it may be unbound). Scope helps prevent name collisions by allowing the same name to refer to different objects – as long as the names have separate scopes. The scope of a name binding is also known as the visibility of an entity, particularly in older or more technical literatureβ€”this is in relation to the referenced entity, not the referencing name.

The term "scope" is also used to refer to the set of all name bindings that are valid within a part of a program or at a given point in a program, which is more correctly referred to as context or environment.

↓ Explore More Topics
In this Dossier

Variable (programming) in the context of String (computer science)

In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. More general, string may also denote a sequence (or list) of data other than just characters.

Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements.

View the full Wikipedia page for String (computer science)
↑ Return to Menu

Variable (programming) in the context of Array data structure

In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key, a collection of which may be a tuple, known as an index tuple. In general, an array is a mutable and linear collection of elements with the same data type. An array is stored such that the position (memory address) of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called a one-dimensional array.

For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index i has the address 2000 + (i Γ— 4).The memory address of the first element of an array is called first address, foundation address, or base address.

View the full Wikipedia page for Array data structure
↑ Return to Menu

Variable (programming) in the context of Literal (computer programming)

In computer science, a literal is a textual representation (notation) of a value as it is written in source code. Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects. An anonymous function is a literal for the function type.

In contrast to literals, variables or constants are symbols that can take on one of a class of fixed values, the constant being constrained not to change. Literals are often used to initialize variables; for example, in the following, 1 is an integer literal and the three letter string in "cat" is a string literal:

View the full Wikipedia page for Literal (computer programming)
↑ Return to Menu

Variable (programming) in the context of Automatic variable

In computer programming, an automatic variable is a local variable which is allocated and deallocated automatically when program flow enters and leaves the variable's scope. The scope is the lexical context, particularly the function or block in which a variable is defined. Local data is typically (in most languages) invisible outside the function or lexical context where it is defined. Local data is also invisible and inaccessible to a called function, but is not deallocated, coming back in scope as the execution thread returns to the caller.

Automatic local variables primarily applies to recursive lexically scoped languages. Automatic local variables are normally allocated in the stack frame of the procedure in which they are declared. This was originally done to achieve re-entrancy and allowing recursion, a consideration that still applies today. The concept of automatic variables in recursive (and nested) functions in a lexically scoped language was introduced to the wider audience with ALGOL in the late 1950s, and further popularized by its many descendants.

View the full Wikipedia page for Automatic variable
↑ Return to Menu

Variable (programming) in the context of Expression (computer science)

In computer science, an expression is a syntactic notation in a programming language that may be evaluated to determine its value of a specific semantic type. It is a combination of one or more numbers, constants, variables, functions, and operators that the programming language interprets (according to its particular rules of precedence and of association) and computes to produce ("to return", in a stateful environment) another value.In simple settings, the resulting value is usually one of various primitive types, such as string, boolean, or numerical (such as integer, floating-point, or complex).

Expressions are often contrasted with statementsβ€”syntactic entities that have no value (an instruction).

View the full Wikipedia page for Expression (computer science)
↑ Return to Menu

Variable (programming) in the context of Free variables and bound variables

In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. The idea is related to a placeholder (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol.

In computer programming, the term free variable refers to variables used in a function that are neither local variables nor parameters of that function. The term non-local variable is often a synonym in this context.

View the full Wikipedia page for Free variables and bound variables
↑ Return to Menu

Variable (programming) in the context of Indirection

In computer science, an indirection is a way of referring to something using a name, reference, or container instead of the value itself. The most common form of indirection is the act of manipulating a value through its memory address. For example, accessing a variable through the use of a pointer. A stored pointer that exists to provide a reference to an object by double indirection is called an indirection node. In some older computer architectures, indirect words supported a variety of more-or-less complicated addressing modes.

Another important example is the domain name system which enables names such as en.wikipedia.org to be used in placeof network addresses such as 208.80.154.224. The indirection from human-readable names to network addresses means that the references to a web page become more memorable, and links do not need to change when a web site is relocated to a different server.

View the full Wikipedia page for Indirection
↑ Return to Menu

Variable (programming) in the context of Semaphore (programming)

In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed (for example, incremented or decremented, or toggled) depending on programmer-defined conditions.

A useful way to think of a semaphore as used in a real-world system is as a record of how many units of a particular resource are available, coupled with operations to adjust that record safely (i.e., to avoid race conditions) as units are acquired or become free, and, if necessary, wait until a unit of the resource becomes available.

View the full Wikipedia page for Semaphore (programming)
↑ Return to Menu

Variable (programming) in the context of Expression (programming)

In computer science, an expression is a syntactic entity in a programming language that may be evaluated to determine its value of a specific semantic type. It is a combination of one or more constants, variables, functions, and operators that the programming language interprets (according to its particular rules of precedence and of association) and computes to produce ("to return", in a stateful environment) another value.In simple settings, the resulting value is usually one of various primitive types, such as string, boolean, or numerical (such as integer, floating-point, or complex).

Expressions are often contrasted with statementsβ€”syntactic entities that have no value (an instruction).

View the full Wikipedia page for Expression (programming)
↑ Return to Menu

Variable (programming) in the context of Global variable

In computer programming, a global variable is a variable with global scope, meaning that it is visible (hence accessible) throughout the program, unless shadowed. The set of all global variables is known as the global environment or global state. In compiled languages, global variables are generally static variables, whose extent (lifetime) is the entire runtime of the program, though in interpreted languages (including command-line interpreters), global variables are generally dynamically allocated when declared, since they are not known ahead of time.

In some languages, all variables are global, or global by default, while in most modern languages variables have limited scope, generally lexical scope, though global variables are often available by declaring a variable at the top level of the program. In other languages, however, global variables do not exist; these are generally modular programming languages that enforce a module structure, or class-based object-oriented programming languages that enforce a class structure.

View the full Wikipedia page for Global variable
↑ Return to Menu