Ultrasonic cleaning in the context of "Cavitation"

Play Trivia Questions online!

or

Skip to study material about Ultrasonic cleaning in the context of "Cavitation"




⭐ Core Definition: Ultrasonic cleaning

Ultrasonic cleaning is a process that uses ultrasound (usually from 20 to 40 kHz) to agitate a fluid, with a cleaning effect. Ultrasonic cleaners come in a variety of sizes, from small desktop units with an internal volume of less than 0.5 litres (0.13Β USΒ gal), to large industrial units with volumes approaching 1,000 litres (260 US gal).

The principle of the ultrasonic cleaning machine is to convert the sound energy of the ultrasonic frequency source into mechanical vibration through the transducer. The vibration generated by the ultrasonic wave is transmitted to the cleaning liquid through the cleaning tank wall so that the micro-bubbles in the liquid in the tank can keep vibrating under the action of the sound wave, destroying and separating the dirty adsorption on the surface of the object.

↓ Menu

πŸ‘‰ Ultrasonic cleaning in the context of Cavitation

Cavitation in fluid mechanics and engineering normally is the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapor pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. As a concrete propeller example: The pressure on the suction side of the propeller blades can be very low and when the pressure falls to that of the vapour pressure of the working liquid, cavities filled with gas vapour can form. The process of the formation of these cavities is referred to as cavitation. If the cavities move into the regions of higher pressure (lower velocity), they will implode or collapse. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation collapse is therefore a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a hard surface cause cyclic stress through repeated implosion. This results in surface fatigue of the material, causing a type of damage also called "cavitation damage" or "cavitation erosion". The most common examples of this kind of wear are to pump impellers, and pipe bends where a sudden change in the direction of fast moving liquid occurs.

Cavitation is usually divided into two classes of behavior. Inertial (or transient) cavitation is the process in which a void or bubble in a liquid rapidly collapses, producing a shock wave. It occurs in nature in the strikes of mantis shrimp and pistol shrimp, as well as in the vascular tissues of plants. In manufactured objects, it can occur in control valves, pumps, propellers and impellers.Non-inertial cavitation is the process in which a bubble in a fluid is forced to oscillate in size or shape due to some form of energy input, such as an acoustic field. The gas in the bubble may contain a portion of a different gas than the vapor phase of the liquid. Such cavitation is often employed in ultrasonic cleaning baths and can also be observed in pumps, propellers, etc.

↓ Explore More Topics
In this Dossier

Ultrasonic cleaning in the context of Washing machine

A washing machine (laundry machine, clothes washer, or washer) is a machine designed to launder clothing. The term is mostly applied to machines that use water. Other ways of doing laundry include dry cleaning (which uses alternative cleaning fluids and is performed by specialist businesses) and ultrasonic cleaning.

Modern-day home appliances use electric power to automatically clean clothes. The user adds laundry detergent, which is sold in liquid, powder, or dehydrated sheet form, to the wash water. The machines are also found in commercial laundromats where customers pay-per-use.

↑ Return to Menu

Ultrasonic cleaning in the context of Megasonic cleaning

Megasonic cleaning is a specialized cleaning method that utilizes high-frequency sound waves to remove contaminants from delicate surfaces. It is particularly effective in industries like semiconductor manufacturing, optics, and medical device production, where precision and gentle cleaning are crucial. It is a type of acoustic cleaning related to ultrasonic cleaning. Similar to ultrasonic cleaning, megasonic cleaning uses a transducer that sits on top of a piezoelectric substrate. The transducer creates acoustic waves at a higher frequency (typically 0.8–2 MHz) than ultrasonic cleaning (20-200 kHz). As a result, the cavitation that occurs is reduced and on a much smaller scale.

↑ Return to Menu