Strange quark in the context of Strangeness production


Strange quark in the context of Strangeness production

Strange quark Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Strange quark in the context of "Strangeness production"


⭐ Core Definition: Strange quark

The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (K), strange D mesons (D
s
), sigma baryons (Σ), and other strange particles.

According to the IUPAP, the symbol s is the official name, while "strange" is to be considered only as a mnemonic. The name sideways has also been used because the s quark (but also the other three remaining quarks) has an I3 value of 0 while the u ("up") and d ("down") quarks have values of +1/2 and −1/2 respectively.

↓ Menu
HINT:

👉 Strange quark in the context of Strangeness production

In high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process. QGP (also known as quark matter) is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium. The word plasma signals that color charged particles (quarks and/or gluons) are able to move in the volume occupied by the plasma. The abundance of strange quarks is formed in pair-production processes in collisions between constituents of the plasma, creating the chemical abundance equilibrium. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.

↓ Explore More Topics
In this Dossier

Strange quark in the context of Up quark

The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2+0.5
−0.4
 MeV/c
. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called antiup quark or simply antiup), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The up quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968.

View the full Wikipedia page for Up quark
↑ Return to Menu

Strange quark in the context of Strangeness

In particle physics, strangeness (symbol S) is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions that occur in a short period of time. The strangeness of a particle is defined as:where ns represents the number of strange quarks (s) and ns represents the number of strange antiquarks (s). Evaluation of strangeness production has become an important tool in search, discovery, observation and interpretation of quark–gluon plasma (QGP). Strangeness is an excited state of matter and its decay is governed by CKM mixing.

The terms strange and strangeness predate the discovery of the quark, and were adopted after its discovery in order to preserve the continuity of the phrase: strangeness of particles as −1 and anti-particles as +1, per the original definition. For all the quark flavour quantum numbers (strangeness, charm, topness and bottomness) the convention is that the flavour charge and the electric charge of a quark have the same sign. With this, any flavour carried by a charged meson has the same sign as its charge.

View the full Wikipedia page for Strangeness
↑ Return to Menu

Strange quark in the context of Kaon

In particle physics, a kaon, also called a K meson and denoted K, is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark) and an up or down antiquark (or quark).

View the full Wikipedia page for Kaon
↑ Return to Menu

Strange quark in the context of Sigma baryon

The sigma baryons are a family of subatomic hadron particles which have two quarks from the first flavour generation (up and / or down quarks), and a third quark from a higher flavour generation, in a combination where the wavefunction sign remains constant when any two quark flavours are swapped. They are thus baryons, with total isospin of 1, and can either be neutral or have an elementary charge of +2, +1, 0, or −1. They are closely related to the lambda baryons, which differ only in the wavefunction's behaviour upon flavour exchange.

The third quark can hence be either a strange (symbols Σ
, Σ
, Σ
), a charm (symbols Σ
c
, Σ
c
, Σ
c
), a bottom (symbols Σ
b
, Σ
b
, Σ
b
) or a top (symbols Σ
t
, Σ
t
, Σ
t
) quark. However, the top sigmas are expected to never be observed, since the Standard Model predicts the mean lifetime of top quarks to be roughly 5×10 s. This is about 20 times shorter than the timescale for strong interactions, and therefore it does not form hadrons.

View the full Wikipedia page for Sigma baryon
↑ Return to Menu

Strange quark in the context of Hyperon

In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quarks. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically represented by the symbol Y.

View the full Wikipedia page for Hyperon
↑ Return to Menu

Strange quark in the context of B meson

In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (B
), down (B
), strange (B
s
) or charm quark (B
c
). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather bottomonium, which is something else entirely.

Each B meson has an antiparticle that is composed of a bottom quark and an up (B
), down (B
), strange (B
s
) or charm (B
c
) antiquark respectively.

View the full Wikipedia page for B meson
↑ Return to Menu