Standard conditions in the context of "Graphite"

Play Trivia Questions online!

or

Skip to study material about Standard conditions in the context of "Graphite"

Ad spacer

⭐ Core Definition: Standard conditions

Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted. Other organizations have established a variety of other definitions.

In industry and commerce, the standard conditions for temperature and pressure are often necessary for expressing the volumes of gases and liquids and related quantities such as the rate of volumetric flow (the volumes of gases vary significantly with temperature and pressure): standard cubic meters per second (Sm/s), and normal cubic meters per second (Nm/s).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Standard conditions in the context of Graphite

Graphite (/ˈɡræft/) is a crystalline allotrope (form) of the element carbon. It consists of many stacked layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on a large scale (1.3 million metric tons per year in 2022) for uses in many critical industries including refractories (50%), lithium-ion batteries (18%), foundries (10%), and lubricants (5%), among others (17%). Graphite converts to diamond under extremely high pressure and temperature. Graphite's low cost, thermal and chemical inertness and characteristic conductivity of heat and electricity finds numerous applications in high energy and high temperature processes.

↓ Explore More Topics
In this Dossier

Standard conditions in the context of Hydrogen

Hydrogen is a chemical element; it has the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, constituting about 75% of all normal matter. Under standard conditions, hydrogen is a gas of diatomic molecules with the formula H2, called dihydrogen, or sometimes hydrogen gas, molecular hydrogen, or simply hydrogen. Dihydrogen is colorless, odorless, non-toxic, and highly combustible. Stars, including the Sun, mainly consist of hydrogen in a plasma state, while on Earth, hydrogen is found as the gas H2 (dihydrogen) and in molecules, such as in water and organic compounds. The most common isotope of hydrogen, H, consists of one proton, one electron, and no neutrons.

Hydrogen gas was first produced artificially in the 17th century by the reaction of acids with metals. Henry Cavendish, in 1766–1781, identified hydrogen gas as a distinct substance and discovered its property of producing water when burned: this is the origin of hydrogen's name, which means 'water-former' (from Ancient Greek: ὕδωρ, romanizedhúdōr, lit.'water', and γεννάω, gennáō, 'I bring forth'). Understanding the colors of light absorbed and emitted by hydrogen was a crucial part of the development of quantum mechanics.

↑ Return to Menu

Standard conditions in the context of Dissociation energy

The bond dissociation energy (BDE, D0, or DH°) is one measure of the strength of a chemical bond A−B. It can be defined as the standard enthalpy change when A−B is cleaved by homolysis to give fragments A and B, which are usually radical species. The enthalpy change is temperature-dependent, and the bond dissociation energy is often defined to be the enthalpy change of the homolysis at 0 K (absolute zero), although the enthalpy change at 298 K (standard conditions) is also a frequently encountered parameter.

As a typical example, the bond dissociation energy for one of the C−H bonds in ethane (C2H6) is defined as the standard enthalpy change of the process

↑ Return to Menu