Hydrogen spectral series in the context of "Hydrogen"

⭐ In the context of Hydrogen, the study of the Hydrogen spectral series was most significant for its contribution to which field of science?

Ad spacer

⭐ Core Definition: Hydrogen spectral series

The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Hydrogen spectral series in the context of Hydrogen

Hydrogen is a chemical element; it has the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, constituting about 75% of all normal matter. Under standard conditions, hydrogen is a gas of diatomic molecules with the formula H2, called dihydrogen, or sometimes hydrogen gas, molecular hydrogen, or simply hydrogen. Dihydrogen is colorless, odorless, non-toxic, and highly combustible. Stars, including the Sun, mainly consist of hydrogen in a plasma state, while on Earth, hydrogen is found as the gas H2 (dihydrogen) and in molecules, such as in water and organic compounds. The most common isotope of hydrogen, H, consists of one proton, one electron, and no neutrons.

Hydrogen gas was first produced artificially in the 17th century by the reaction of acids with metals. Henry Cavendish, in 1766–1781, identified hydrogen gas as a distinct substance and discovered its property of producing water when burned: this is the origin of hydrogen's name, which means 'water-former' (from Ancient Greek: ὕδωρ, romanizedhúdōr, lit.'water', and γεννάω, gennáō, 'I bring forth'). Understanding the colors of light absorbed and emitted by hydrogen was a crucial part of the development of quantum mechanics.

↓ Explore More Topics
In this Dossier

Hydrogen spectral series in the context of Rydberg formula

In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.

↑ Return to Menu

Hydrogen spectral series in the context of Balmer series

The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.

The visible spectrum of light from hydrogen displays four wavelengths, 410 nm, 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by the principal quantum number n equals 2. There are several prominent ultraviolet Balmer lines with wavelengths shorter than 400 nm. The series continues with an infinite number of lines whose wavelengths asymptotically approach the limit of 364.5 nm in the ultraviolet.

↑ Return to Menu

Hydrogen spectral series in the context of Dirac equation

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to fully account for special relativity in the context of quantum mechanics. The equation is validated by its rigorous accounting of the observed fine structure of the hydrogen spectrum and has become vital in the building of the Standard Model.

The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved. The existence of antimatter was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin. The wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation, which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. In the context of quantum field theory, the Dirac equation is reinterpreted to describe quantum fields corresponding to spin-1/2 particles.

↑ Return to Menu