Side effect (computer science) in the context of "Scheme (programming language)"

Play Trivia Questions online!

or

Skip to study material about Side effect (computer science) in the context of "Scheme (programming language)"




⭐ Core Definition: Side effect (computer science)

In computer science, an operation or expression is said to have a side effect if it has any observable effect other than its primary effect of reading the value of its arguments and returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, a static local variable or a mutable argument passed by reference; performing I/O; or calling other functions with side-effects. In the presence of side effects, a program's behaviour may depend on history; that is, the order of evaluation matters. Understanding and debugging a function with side effects requires knowledge about the context and its possible histories.Side effects play an important role in the design and analysis of programming languages. The degree to which side effects are used depends on the programming paradigm. For example, imperative programming is commonly used to produce side effects, to update a system's state. By contrast, declarative programming is commonly used to report on the state of system, without side effects.

Functional programming aims to minimize or eliminate side effects. The lack of side effects makes it easier to do formal verification of a program. The functional language Haskell eliminates side effects such as I/O and other stateful computations by replacing them with monadic actions. Functional languages such as Standard ML, Scheme and Scala do not restrict side effects, but it is customary for programmers to avoid them.

↓ Menu

In this Dossier

Side effect (computer science) in the context of Conditional (computer programming)

In computer programming, a conditional statement directs program control flow based on the value of a condition; a Boolean expression. A conditional expression evaluates to a value without the side-effect of changing control flow.

Many programming languages (such as C) have distinct conditional statements and expressions. In pure functional programming, a conditional expression does not have side-effects, many functional programming languages with conditional expressions (such as Lisp) support side-effects.

↑ Return to Menu

Side effect (computer science) in the context of Postfix notation

Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands. The notation does not need any parentheses for as long as each operator has a fixed number of operands.

The term postfix notation describes the general scheme in mathematics and computer sciences, whereas the term reverse Polish notation typically refers specifically to the method used to enter calculations into hardware or software calculators, which often have additional side effects and implications depending on the actual implementation involving a stack. The description "Polish" refers to the nationality of logician Jan Łukasiewicz, who invented Polish notation in 1924.

↑ Return to Menu

Side effect (computer science) in the context of Stepping (debugging)

Program animation or stepping refers to the debugging method of executing code one instruction or line at a time. The programmer may examine the state of the program, machine, and related data before and after execution of a particular line of code. This allows the programmer to evaluate the effects of each statement or instruction in isolation, and thereby gain insight into the behavior (or misbehavior) of the executing program. Nearly all modern IDEs and debuggers support this mode of execution.

↑ Return to Menu

Side effect (computer science) in the context of Programming paradigms

A programming paradigm is a relatively high-level way to conceptualize and structure the implementation of a computer program. A programming language can be classified as supporting one or many paradigms.

Paradigms are separated along and described by different dimensions of programming. Some paradigms are about implications of the execution model, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are about the way code is organized, such as grouping into units that include both state and behavior. Yet others are about syntax and grammar.

↑ Return to Menu

Side effect (computer science) in the context of Reverse Polish notation

Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands. The notation does not need any parentheses as long as each operator has a fixed number of operands.

The term postfix notation describes the general scheme in mathematics and computer sciences, whereas the term reverse Polish notation typically refers specifically to the method used to enter calculations into hardware or software calculators, which often have additional side effects and implications depending on the actual implementation involving a stack. The description "Polish" refers to the nationality of logician Jan Łukasiewicz, who invented Polish notation in 1924.

↑ Return to Menu

Side effect (computer science) in the context of Declarative programming

In computer science, declarative programming is a programming paradigm that expresses the logic of a computation without describing its control flow.

Many languages that apply this style attempt to minimize or eliminate side effects by describing what the program must accomplish in terms of the problem domain, rather than describing how to accomplish it as a sequence of the programming language primitives (the how being left up to the language's implementation). This is in contrast with imperative programming, which implements algorithms in explicit steps.

↑ Return to Menu

Side effect (computer science) in the context of Pure function

In computer programming, a pure function is a function that has the following properties:

  1. the function return values are identical for identical arguments (no variation with local static variables, non-local variables, mutable reference arguments or input streams, i.e., referential transparency), and
  2. the function has no side effects (no mutation of non-local variables, mutable reference arguments or input/output streams).
↑ Return to Menu