Scala (programming language) in the context of "Side effect (computer science)"

Play Trivia Questions online!

or

Skip to study material about Scala (programming language) in the context of "Side effect (computer science)"





👉 Scala (programming language) in the context of Side effect (computer science)

In computer science, an operation or expression is said to have a side effect if it has any observable effect other than its primary effect of reading the value of its arguments and returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, a static local variable or a mutable argument passed by reference; performing I/O; or calling other functions with side-effects. In the presence of side effects, a program's behaviour may depend on history; that is, the order of evaluation matters. Understanding and debugging a function with side effects requires knowledge about the context and its possible histories.Side effects play an important role in the design and analysis of programming languages. The degree to which side effects are used depends on the programming paradigm. For example, imperative programming is commonly used to produce side effects, to update a system's state. By contrast, declarative programming is commonly used to report on the state of system, without side effects.

Functional programming aims to minimize or eliminate side effects. The lack of side effects makes it easier to do formal verification of a program. The functional language Haskell eliminates side effects such as I/O and other stateful computations by replacing them with monadic actions. Functional languages such as Standard ML, Scheme and Scala do not restrict side effects, but it is customary for programmers to avoid them.

↓ Explore More Topics
In this Dossier

Scala (programming language) in the context of Bootstrap compiler

In computer science, bootstrapping is the technique for producing a self-compiling compiler – that is, a compiler (or assembler) written in the source programming language that it intends to compile. An initial core version of the compiler (the bootstrap compiler) is generated in a different language (which could be assembly language); successive expanded versions of the compiler are developed using this minimal subset of the language. The problem of compiling a self-compiling compiler has been called the chicken-or-egg problem in compiler design, and bootstrapping is a solution to this problem.

Bootstrapping is a fairly common practice when creating a programming language. Many compilers for many programming languages are bootstrapped, including compilers for ALGOL, BASIC, C, Common Lisp, D, Eiffel, Elixir, Factor, Go, Haskell, Java, Modula-2, Nim, Oberon, OCaml, Pascal, PL/I, Python, Rust, Scala, Scheme, TypeScript, Vala, Zig and more.

↑ Return to Menu

Scala (programming language) in the context of LLVM

LLVM is a set of compiler and toolchain technologies that can be used to develop a frontend for any programming language and a backend for any instruction set architecture. LLVM is designed around a language-independent intermediate representation (IR) that serves as a portable, high-level assembly language that can be optimized with a variety of transformations over multiple passes. The name LLVM originally stood for Low Level Virtual Machine. However, the project has since expanded, and the name is no longer an acronym but an orphan initialism.

LLVM is written in C++ and is designed for compile-time, link-time, and runtime optimization. Originally implemented for C and C++, the language-agnostic design of LLVM has since spawned a wide variety of frontends: languages with compilers that use LLVM (or which do not directly use LLVM but can generate compiled programs as LLVM IR) include ActionScript, Ada, C# for .NET, Common Lisp, PicoLisp, Crystal, CUDA, D, Delphi, Dylan, Forth, Fortran, FreeBASIC, Free Pascal, Halide, Haskell, Idris, Jai (only for optimized release builds), Java bytecode, Julia, Kotlin, LabVIEW's G language, Objective-C, OpenCL, PostgreSQL's SQL and PL/pgSQL, Ruby, Rust, Scala, Standard ML, Swift, Xojo, and Zig.

↑ Return to Menu

Scala (programming language) in the context of Object-oriented computer programming

Object-oriented programming (OOP) is a programming paradigm based on objects – software entities that encapsulate data and function(s). An OOP computer program consists of objects that interact with one another. An OOP language is one that provides object-oriented programming features, but as the set of features that contribute to OOP is contested, classifying a language as OOP – and the degree to which it supports OOP – is debatable. As paradigms are not mutually exclusive, a language can be multi-paradigm (i.e. categorized as more than only OOP).

Notable languages with OOP support include Ada, ActionScript, C++, Common Lisp, C#, Dart, Eiffel, Fortran 2003, Haxe, Java, JavaScript, Kotlin, Logo, MATLAB, Objective-C, Object Pascal, Perl, PHP, Python, R, Raku, Ruby, Scala, SIMSCRIPT, Simula, Smalltalk, Swift, Vala and Visual Basic (.NET).

↑ Return to Menu