Semipermeable membrane in the context of "Osm/L"

Play Trivia Questions online!

or

Skip to study material about Semipermeable membrane in the context of "Osm/L"

Ad spacer

⭐ Core Definition: Semipermeable membrane

Semipermeable membrane is a type of synthetic or biologic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute. Depending on the membrane and the solute, permeability may depend on solute size, solubility, properties, or chemistry. How the membrane is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.

Biological membranes are selectively permeable, with the passage of molecules controlled by facilitated diffusion, passive transport or active transport regulated by proteins embedded in the membrane.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Semipermeable membrane in the context of Osm/L

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/L (pronounced "osmolar"), in the same way that the molarity of a solution is expressed as "M" (pronounced "molar").

Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of particles on dissociation of osmotically active material (osmoles of solute particles) per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

↓ Explore More Topics
In this Dossier

Semipermeable membrane in the context of Cell (biology)

The cell is the basic structural and functional unit of all forms of life or organisms. The term comes from the Latin word cellula meaning 'small room'. A biological cell basically consists of a semipermeable cell membrane enclosing cytoplasm that contains genetic material. Most cells are only visible under a microscope. Except for highly-differentiated cell types (examples include red blood cells and gametes) most cells are capable of replication, and protein synthesis. Some types of cell are motile. Cells emerged on Earth about four billion years ago.

All organisms are grouped into prokaryotes, and eukaryotes. Prokaryotes are single-celled, and include archaea, and bacteria. Eukaryotes can be single-celled or multicellular, and include protists, plants, animals, most types of fungi, and some species of algae. All multicellular organisms are made up of many different types of cell. The diploid cells that make up the body of a plant or animal are known as somatic cells, and in animals excludes the haploid gametes.

↑ Return to Menu

Semipermeable membrane in the context of Cell membrane

The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a semipermeable biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane is a lipid bilayer, usually consisting of phospholipids and glycolipids; eukaryotes and some archaea typically have sterols (such as cholesterol in animals) interspersed between them as well, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as transporters, and peripheral proteins that attach to the surface of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose.

The cell membrane controls the movement of substances in and out of a cell, being selectively permeable to ions and organic molecules. In addition, cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity, and cell signaling and serve as the attachment surface for several extracellular structures, including the cell wall and the carbohydrate cell coat called the glycocalyx, as well as the intracellular network of protein fibers called the cytoskeleton. In the field of synthetic biology, cell membranes can be artificially reassembled.

↑ Return to Menu

Semipermeable membrane in the context of Flux (biology)

In general, flux in biology relates to movement of a substance between compartments. There are several cases where the concept of flux is important.

  • The movement of molecules across a membrane: in this case, flux is defined by the rate of diffusion or transport of a substance across a permeable membrane. Except in the case of active transport, net flux is directly proportional to the concentration difference across the membrane, the surface area of the membrane, and the membrane permeability constant.
  • In ecology, flux is often considered at the ecosystem level – for instance, accurate determination of carbon fluxes using techniques like eddy covariance (at a regional and global level) is essential for modeling the causes and consequences of global warming.
  • Metabolic flux refers to the rate of flow of metabolites through a biochemical network, along a linear metabolic pathway, or through a single enzyme. A calculation may also be made of carbon flux or flux of other elemental components of biomolecules (e.g. nitrogen). The general unit of flux is chemical mass /time (e.g., micromole/minute; mg/kg/minute). Flux rates are dependent on a number of factors, including: enzyme concentration; the concentration of precursor, product, and intermediate metabolites; post-translational modification of enzymes; and the presence of metabolic activators or repressors. Metabolic flux in biologic systems can refer to biosynthesis rates of polymers or other macromolecules, such as proteins, lipids, polynucleotides, or complex carbohydrates, as well as the flow of intermediary metabolites through pathways. Metabolic control analysis and flux balance analysis provide frameworks for understanding metabolic fluxes and their constraints.
↑ Return to Menu

Semipermeable membrane in the context of Chemiosmosis

Chemiosmosis is the movement of ions across a semipermeable membrane through an integral membrane protein, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H) through ATP synthase during cellular respiration or photophosphorylation.

Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to make ATP. This process is related to osmosis, the movement of water across a selective membrane, which is why it is called "chemiosmosis".

↑ Return to Menu

Semipermeable membrane in the context of Ultrafiltration

Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in the so-called retentate, while water and low molecular weight solutes pass through the membrane in the permeate (filtrate). This separation process is used in industry and research for purifying and concentrating macromolecular (10–10Β Da) solutions, especially protein solutions.

Ultrafiltration is not fundamentally different from microfiltration. Both of these are separate based on size exclusion or particle capture. It is fundamentally different from membrane gas separation, which separate based on different amounts of absorption and different rates of diffusion. Ultrafiltration membranes are defined by the molecular weight cut-off (MWCO) of the membrane used. Ultrafiltration is applied in cross-flow or dead-end mode.

↑ Return to Menu

Semipermeable membrane in the context of Vascular permeability

Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the permeability of a blood vessel wall–in other words, the blood vessel wall's capacity to allow for the flow of small molecules (such as drugs, nutrients, water, or ions) or even whole cells (such as lymphocytes on their way to a site of inflammation) in and out of the vessel. Blood vessel walls are lined by a single layer of endothelial cells. The gaps between endothelial cells (cell junctions) are strictly regulated depending on the type and physiological state of the tissue.

There are several techniques to measure vascular permeability to certain molecules. For instance, the cannulation of a single microvessel with a micropipette: the microvessel is perfused with a certain pressure, occluded downstream, and then the velocity of some cells will be related to the permeability. Another technique uses multiphoton fluorescence intravital microscopy through which the flow is related to fluorescence intensity and the permeability is estimated from the Patlak transformation.

↑ Return to Menu