Osmosis in the context of "Semipermeable membrane"

Play Trivia Questions online!

or

Skip to study material about Osmosis in the context of "Semipermeable membrane"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Osmosis in the context of Semipermeable membrane

Semipermeable membrane is a type of synthetic or biologic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute. Depending on the membrane and the solute, permeability may depend on solute size, solubility, properties, or chemistry. How the membrane is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.

Biological membranes are selectively permeable, with the passage of molecules controlled by facilitated diffusion, passive transport or active transport regulated by proteins embedded in the membrane.

↓ Explore More Topics
In this Dossier

Osmosis in the context of Osmotic power

Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) andpressure retarded osmosis (PRO). Both processes rely on osmosis with membranes. The key waste product is brackish water. This byproduct is the result of natural forces that are being harnessed: the flow of fresh water into seas that are made up of salt water.

In 1954, Pattle suggested that there was an untapped source of power when a river mixes with the sea, in terms of the lost osmotic pressure, however it was not until the mid-1970s when a practical method of harnessing it using selectively permeable membranes by Loeb was outlined.

↑ Return to Menu

Osmosis in the context of Curing (food preservation)

Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of salt, with the aim of drawing moisture out of the food by the process of osmosis. Because curing increases the solute concentration in the food and hence decreases its water potential, the food becomes inhospitable for the microbe growth that causes food spoilage. Curing can be traced back to antiquity, and was the primary method of preserving meat and fish until the late 19th century. Dehydration was the earliest form of food curing. Many curing processes also involve smoking, spicing, cooking, or the addition of combinations of sugar, nitrate, and nitrite.

Meat preservation in general (of meat from livestock, game, and poultry) comprises the set of all treatment processes for preserving the properties, taste, texture, and color of raw, partially cooked, or cooked meats while keeping them edible and safe to consume. Curing has been the dominant method of meat preservation for thousands of years, although modern developments like refrigeration and synthetic preservatives have begun to complement and supplant it.

↑ Return to Menu

Osmosis in the context of Chemiosmosis

Chemiosmosis is the movement of ions across a semipermeable membrane through an integral membrane protein, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H) through ATP synthase during cellular respiration or photophosphorylation.

Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to make ATP. This process is related to osmosis, the movement of water across a selective membrane, which is why it is called "chemiosmosis".

↑ Return to Menu

Osmosis in the context of Lipid signaling

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms (such as monoamine neurotransmission) because lipids can freely diffuse through membranes (see osmosis). One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

↑ Return to Menu

Osmosis in the context of Osm/L

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/L (pronounced "osmolar"), in the same way that the molarity of a solution is expressed as "M" (pronounced "molar").

Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of particles on dissociation of osmotically active material (osmoles of solute particles) per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

↑ Return to Menu

Osmosis in the context of Membrane potential

Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is the energy (i.e. work) per charge which is required to move a (very small) positive charge at constant velocity across the cell membrane from the exterior to the interior. (If the charge is allowed to change velocity, the change of kinetic energy and production of radiation must be taken into account.)

Typical values of membrane potential, normally given in units of millivolts and denoted as mV, range from −80 mV to −40 mV. For such typical negative membrane potentials, positive work is required to move a positive charge from the interior to the exterior. However, thermal kinetic energy allows ions to overcome the potential difference. For a selectively permeable membrane, this permits a net flow against the gradient. This is a kind of osmosis.

↑ Return to Menu

Osmosis in the context of Water potential

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

Water potential integrates a variety of different potential drivers of water movement, which may operate in the same or different directions. Within complex biological systems, many potential factors may be operating simultaneously. For example, the addition of solutes lowers the potential (negative vector), while an increase in pressure increases the potential (positive vector). If the flow is not restricted, water will move from an area of higher water potential to an area that is lower potential. A common example is water with dissolved salts, such as seawater or the fluid in a living cell. These solutions have negative water potential, relative to the pure water reference. With no restriction on flow, water will move from the locus of greater potential (pure water) to the locus of lesser (the solution); flow proceeds until the difference in potential is equalized or balanced by another water potential factor, such as pressure or elevation.

↑ Return to Menu

Osmosis in the context of Salting (food)

Salting is the preservation of food with dry edible salt. It is related to pickling in general and more specifically to brining, also known as fermenting (preparing food with brine, that is, salty water), and is one form of curing. It is one of the oldest methods of preserving food, and two historically significant salt-cured foods are salted fish (usually dried and salted cod or salted herring) and salt-cured meat (such as bacon). Vegetables such as runner beans and cabbage are also often preserved in this manner.

Salting is used because most bacteria, fungi and other potentially pathogenic organisms cannot survive in a highly salty environment, due to the hypertonic nature of salt. Any living cell in such an environment will become dehydrated through osmosis and die or become temporarily inactivated. Fine grained salts were more expensive but also absorbed moisture faster than coarse salt.

↑ Return to Menu

Osmosis in the context of Reverse osmosis

Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances (principally bacteria), and is used in industrial processes and the production of potable water.

RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side. The relative sizes of the various molecules determines what passes through. "Selective" membranes reject large molecules, while accepting smaller molecules (such as solvent molecules, e.g., water).

↑ Return to Menu