Sea wave in the context of Continuum (spectrum)


Sea wave in the context of Continuum (spectrum)

Sea wave Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Sea wave in the context of "Continuum (spectrum)"


⭐ Core Definition: Sea wave

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

When directly generated and affected by local wind, a wind wave system is called a wind sea. Wind waves will travel in a great circle route after being generated – curving slightly left in the southern hemisphere and slightly right in the northern hemisphere. After moving out of the area of fetch and no longer being affected by the local wind, wind waves are called swells and can travel thousands of kilometers. A noteworthy example of this is waves generated south of Tasmania during heavy winds that will travel across the Pacific to southern California, producing desirable surfing conditions. Wind waves in the ocean are also called ocean surface waves and are mainly gravity waves, where gravity is the main equilibrium force.

↓ Menu
HINT:

In this Dossier

Sea wave in the context of Spectrum (physical sciences)

In the physical sciences, spectrum describes any continuous range of either frequency or wavelength values. The term initially referred to the range of observed colors as white light is dispersed through a prism — introduced to optics by Isaac Newton in the 17th century.

The concept was later expanded to other waves, such as sound waves and sea waves that also present a variety of frequencies and wavelengths (e.g., noise spectrum, sea wave spectrum). Starting from Fourier analysis, the concept of spectrum expanded to signal theory, where the signal can be graphed as a function of frequency and information can be placed in selected ranges of frequency. Presently, any quantity directly dependent on, and measurable along the range of, a continuous independent variable can be graphed along its range or spectrum. Examples are the range of electron energy in electron spectroscopy or the range of mass-to-charge ratio in mass spectrometry.

View the full Wikipedia page for Spectrum (physical sciences)
↑ Return to Menu

Sea wave in the context of Carrier-based aircraft

A carrier-based aircraft (also known as carrier-capable aircraft, carrier-borne aircraft, carrier aircraft or aeronaval aircraft) is a navalised aircraft designed for seaborne flight operations from aircraft carriers. The term is generally applied only to shipborne fixed-wing aircraft that require a runway of some sort for takeoff and landing, as VTOL aircraft such as helicopters are inherently capable of adapting to flight operations from a wide variety of ships (not just aircraft carriers) as long as the served vessel is equipped with helipads or a sufficiently spacious deck that can provide a reliable landing area, which include helicopter carriers, amphibious assault ships, aviation-capable surface combatants (cruisers, destroyers, frigates and some corvettes), container ships and even cruiseliners.

Carrier-based aircraft are designed for many purposes including aerial combat, surface attack, anti-submarine warfare (ASW), search and rescue (SAR), carrier onboard delivery (COD), weather observation, reconnaissance and airborne early warning and control (AEW&C). Such aircraft must be able to take off from the short distance available on the carrier's flight deck and be sturdy enough to withstand the abrupt forces exerted by on a pitching deck due to sea waves. Some modern carrier aircraft are designed for catapult-assisted takeoffs and thus also need to be constructed more robust airframes and landing gears that can handle sudden forward accelerations. Arrestor hook is mandatory feature for those designed for CATOBAR or STOBAR landing, while thrust vectoring or tiltrotor nacelles are commonly seen in those capable of V/STOL operations. In addition, their wings are generally larger (thus can generate more lift) than the land-launched counterparts, and are typically able to fold up or swing back for taxiing, pushback and parking in tight quarters.

View the full Wikipedia page for Carrier-based aircraft
↑ Return to Menu