Free surface in the context of Sea wave


Free surface in the context of Sea wave

Free surface Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Free surface in the context of "Sea wave"


⭐ Core Definition: Free surface

In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress,such as the interface between two homogeneous fluids.An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere (gas mixture). Unlike liquids, gases cannot form a free surface on their own.Fluidized/liquified solids, including slurries, granular materials, and powders may form a free surface.

A liquid in a gravitational field will form a free surface if unconfined from above.Under mechanical equilibrium this free surface must be perpendicular to the forces acting on the liquid; if not there would be a force along the surface, and the liquid would flow in that direction. Thus, on the surface of the Earth, all free surfaces of liquids are horizontal unless disturbed (except near solids dipping into them, where surface tension distorts the surface in a region called the meniscus).

↓ Menu
HINT:

In this Dossier

Free surface in the context of Wind wave

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

When directly generated and affected by local wind, a wind wave system is called a wind sea. Wind waves will travel in a great circle route after being generated – curving slightly left in the southern hemisphere and slightly right in the northern hemisphere. After moving out of the area of fetch and no longer being affected by the local wind, wind waves are called swells and can travel thousands of kilometers. A noteworthy example of this is waves generated south of Tasmania during heavy winds that will travel across the Pacific to southern California, producing desirable surfing conditions. Wind waves in the ocean are also called ocean surface waves and are mainly gravity waves, where gravity is the main equilibrium force.

View the full Wikipedia page for Wind wave
↑ Return to Menu

Free surface in the context of Water droplet

A drop or droplet is a small column of liquid, bounded completely or almost completely by free surfaces. A drop may form when liquid accumulates at the end of a tube or other surface boundary, producing a hanging drop called a pendant drop. Drops may also be formed by the condensation of a vapor or by atomization of a larger mass of solid. Water vapor will condense into droplets depending on the temperature. The temperature at which droplets form is called the dew point.

View the full Wikipedia page for Water droplet
↑ Return to Menu

Free surface in the context of Hydraulic

Hydraulics (from Ancient Greek ὕδωρ (húdōr) 'water' and αὐλός (aulós) 'pipe') is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concerns gases. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on applied engineering using the properties of fluids. In its fluid power applications, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some parts of science and most of engineering modules, and they cover concepts such as pipe flow, dam design, fluidics, and fluid control circuitry. The principles of hydraulics are naturally in use in the human body within the vascular system and erectile tissue.

Free surface hydraulics is the branch of hydraulics dealing with free surface flow, such as occurring in rivers, canals, lakes, estuaries, and seas. Its sub-field open-channel flow studies the flow in open channels.

View the full Wikipedia page for Hydraulic
↑ Return to Menu

Free surface in the context of Wind stress

In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.

View the full Wikipedia page for Wind stress
↑ Return to Menu

Free surface in the context of Wake (physics)

In fluid dynamics, a wake may either be:

  • the region of recirculating flow immediately behind a moving or stationary blunt body, caused by viscosity, which may be accompanied by flow separation and turbulence, or
  • the wave pattern on the water surface downstream of an object in a flow, or produced by a moving object (e.g. a ship), caused by density differences of the fluids above and below the free surface and gravity (or surface tension).
View the full Wikipedia page for Wake (physics)
↑ Return to Menu

Free surface in the context of Water level

Water level, also known as gauge height or stage, is the elevation of the free surface of a sea, stream, lake or reservoir relative to a specified vertical datum.Over long distances, neglecting external forcings (such as wind), water level tends to conform to an equigeopotential surface.

View the full Wikipedia page for Water level
↑ Return to Menu

Free surface in the context of Free surface effect

The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize.

It refers to the tendency of liquids — and of unbound aggregates of small solid objects, like seeds, gravel, or crushed ore, whose behavior approximates that of liquids — to move in response to changes in the attitude of a craft's cargo holds, decks, or liquid tanks in reaction to operator-induced motions (or sea states caused by waves and wind acting upon the craft). When referring to the free surface effect, the condition of a tank that is not full is described as a "slack tank", while a full tank is "pressed up".

View the full Wikipedia page for Free surface effect
↑ Return to Menu

Free surface in the context of Open-channel flow

In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not hydraulic pressure.

View the full Wikipedia page for Open-channel flow
↑ Return to Menu

Free surface in the context of Sea state

In oceanography, sea state is the general condition of the free surface on a large body of water—with respect to wind waves and swell—at a certain location and moment. A sea state is characterized by statistics, including the wave height, period, and spectrum. The sea state varies with time, as the wind and swell conditions change. The sea state can be assessed either by an experienced observer (like a trained mariner) or by using instruments like weather buoys, wave radar, or Earth observation satellites.

The short-term statistics describing the sea state are determined for a time interval in which the sea state is considered to be constant. This duration has to be much longer than the individual wave period, but shorter than the period in which the wind and swell conditions can be expected to vary significantly. Typically, the sea state is assumed to be constant for 15-30 minutes.

View the full Wikipedia page for Sea state
↑ Return to Menu