Continuum (spectrum) in the context of Sea wave


Continuum (spectrum) in the context of Sea wave

Continuum (spectrum) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Continuum (spectrum) in the context of "Sea wave"


⭐ Core Definition: Continuum (spectrum)

In the physical sciences, spectrum describes any continuous range of either frequency or wavelength values. The term initially referred to the range of observed colors as white light is dispersed through a prism — introduced to optics by Isaac Newton in the 17th century.

The concept was later expanded to other waves, such as sound waves and sea waves that also present a variety of frequencies and wavelengths (e.g., noise spectrum, sea wave spectrum). Starting from Fourier analysis, the concept of spectrum expanded to signal theory, where the signal can be graphed as a function of frequency and information can be placed in selected ranges of frequency. Presently, any quantity directly dependent on, and measurable along the range of, a continuous independent variable can be graphed along its range or spectrum. Examples are the range of electron energy in electron spectroscopy or the range of mass-to-charge ratio in mass spectrometry.

↓ Menu
HINT:

In this Dossier

Continuum (spectrum) in the context of Stellar classification

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Stellar classification
↑ Return to Menu

Continuum (spectrum) in the context of Spectral type

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O-type) to the coolest (M-type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Spectral type
↑ Return to Menu