Pyrometallurgy in the context of "Non-ferrous extractive metallurgy"

Play Trivia Questions online!

or

Skip to study material about Pyrometallurgy in the context of "Non-ferrous extractive metallurgy"

Ad spacer

⭐ Core Definition: Pyrometallurgy

Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable metals. Pyrometallurgical treatment may produce products able to be sold such as pure metals, or intermediate compounds or alloys, suitable as feed for further processing. Examples of elements extracted by pyrometallurgical processes include the oxides of less reactive elements like iron, copper, zinc, chromium, tin, and manganese.

Pyrometallurgical processes are generally grouped into one or more of the following categories:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pyrometallurgy in the context of Non-ferrous extractive metallurgy

Non-ferrous extractive metallurgy is one of the two branches of extractive metallurgy which pertains to the processes of reducing valuable, non-iron metals from ores or raw material. Metals like zinc, copper, lead, aluminium as well as rare and noble metals are of particular interest in this field, while the more common metal, iron, is considered a major impurity. Like ferrous extraction, non-ferrous extraction primarily focuses on the economic optimization of extraction processes in separating qualitatively and quantitatively marketable metals from its impurities (gangue).

Any extraction process will include a sequence of steps or unit processes for separating highly pure metals from undesirables in an economically efficient system. Unit processes are usually broken down into three categories: pyrometallurgy, hydrometallurgy, and electrometallurgy. In pyrometallurgy, the metal ore is first oxidized through roasting or smelting. The target metal is further refined at high temperatures and reduced to its pure form. In hydrometallurgy, the object metal is first dissociated from other materials using a chemical reaction, which is then extracted in pure form using electrolysis or precipitation. Finally, electrometallurgy generally involves electrolytic or electrothermal processing. The metal ore is either distilled in an electrolyte or acid solution, then magnetically deposited onto a cathode plate (electrowinning); or smelted then melted using an electric arc or plasma arc furnace (electrothermic reactor).

↓ Explore More Topics
In this Dossier

Pyrometallurgy in the context of Extractive metallurgy

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

The field of ferrous and non-ferrous extractive metallurgy have specialties that are generically grouped into the categories of mineral processing, hydrometallurgy, pyrometallurgy, and electrometallurgy based on the process adopted to extract the metal. Several processes are used for extraction of the same metal depending on occurrence and chemical requirements.

↑ Return to Menu

Pyrometallurgy in the context of Slag

Slag is a by-product or co-product of smelting (pyrometallurgical) ores and recycled metals depending on the type of material being produced. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous (co-products of processing iron and steel), ferroalloy (a by-product of ferroalloy production) or non-ferrous/base metals (by-products of recovering non-ferrous materials like copper, nickel, zinc and phosphorus). Within these general categories, slags can be further categorized by their precursor and processing conditions. Examples include blast furnace slags, air-cooled blast furnace slag, granulated blast furnace slag, basic oxygen furnace slag, and electric arc furnace (EAF) slag. Slag generated from the EAF process can contain toxic metals, which can be hazardous to human and environmental health.

Due to the large demand for ferrous, ferralloy, and non-ferrous materials, slag production has increased throughout the years despite recycling (most notably in the iron and steelmaking industries) and upcycling efforts. The World Steel Association (WSA) estimates that 600 kg of co-materials (co-products and by-products; about 90 wt% is slags) are generated per tonne of steel produced.

↑ Return to Menu

Pyrometallurgy in the context of Refining (metallurgy)

In metallurgy, refining consists of purifying an impure metal. It is to be distinguished from other processes such as smelting and calcining in that those two involve a chemical change to the raw material, whereas in refining the final material is chemically identical to the raw material. Refining thus increases the purity of the raw material via processing. There are many processes including pyrometallurgical and hydrometallurgical techniques.

↑ Return to Menu

Pyrometallurgy in the context of Metallurgical furnace

A metallurgical furnace is an industrial furnace used to heat, melt, or otherwise process metals. Furnaces have been a central piece of equipment throughout the history of metallurgy; processing metals with heat is even its own engineering specialty known as pyrometallurgy.

One important furnace application, especially in iron and steel production, is smelting, where metal ores are reduced under high heat to separate the metal content from mineral gangue. The heat energy to fuel a furnace may be supplied directly by fuel combustion or by electricity. Different processes and the unique properties of specific metals and ores have led to many different furnace types.

↑ Return to Menu

Pyrometallurgy in the context of Hydrometallurgy

Hydrometallurgy is a technique within the field of extractive metallurgy, the obtaining of metals from their ores. Hydrometallurgy uses solutions to recover metals from ores, concentrates, and recycled or residual materials. Usually the extracting solution is aqueous (water-based), often containing additives such as acids. In select cases, the extracting solvent is nonaqueous. Processing techniques that complement hydrometallurgy are pyrometallurgy, vapour metallurgy, and molten salt electrometallurgy. Hydrometallurgy is typically divided into three general areas:

  • Leaching
  • Solution concentration and purification
  • Metal or metal compound recovery
↑ Return to Menu

Pyrometallurgy in the context of Electrometallurgy

Electrometallurgy is a method in metallurgy that uses electrical energy to produce metals by electrolysis. It is usually the last stage in metal production and is therefore preceded by pyrometallurgical or hydrometallurgical operations. The electrolysis can be done on a molten metal oxide (smelt electrolysis) which is used for example to produce aluminium from aluminium oxide via the Hall-Hérault process. Electrolysis can be used as a final refining stage in pyrometallurgical metal production (electrorefining) and it is also used for reduction of a metal from an aqueous metal salt solution produced by hydrometallurgy (electrowinning).

↑ Return to Menu