Protoplanetary disk in the context of Neohadean


Protoplanetary disk in the context of Neohadean

Protoplanetary disk Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Protoplanetary disk in the context of "Neohadean"


⭐ Core Definition: Protoplanetary disk

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are similar, an accretion disk is hotter and spins much faster; it is also found on black holes, not stars. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

↓ Menu
HINT:

In this Dossier

Protoplanetary disk in the context of Planets

A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets by the most restrictive definition of the term: the terrestrial planets Mercury, Venus, Earth, and Mars, and the giant planets Jupiter, Saturn, Uranus, and Neptune. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.

The word planet comes from the Greek πλανήται (planḗtai) 'wanderers'. In antiquity, this word referred to the Sun, Moon, and five points of light visible to the naked eye that moved across the background of the stars—namely, Mercury, Venus, Mars, Jupiter, and Saturn. Planets have historically had religious associations: multiple cultures identified celestial bodies with gods, and these connections with mythology and folklore persist in the schemes for naming newly discovered Solar System bodies. Earth itself was recognized as a planet when heliocentrism supplanted geocentrism during the 16th and 17th centuries.

View the full Wikipedia page for Planets
↑ Return to Menu

Protoplanetary disk in the context of Nebular hypothesis

The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

According to the nebular theory, stars form in massive and dense clouds of molecular hydrogengiant molecular clouds (GMC). These clouds are gravitationally unstable, and matter coalesces within them to smaller denser clumps, which then rotate, collapse, and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk (proplyd) around the young star. This may give birth to planets in certain circumstances, which are not well known. Thus the formation of planetary systems is thought to be a natural result of star formation. A Sun-like star usually takes approximately 1 million years to form, with the protoplanetary disk evolving into a planetary system over the next 10–100 million years.

View the full Wikipedia page for Nebular hypothesis
↑ Return to Menu

Protoplanetary disk in the context of Accretion (astrophysics)

In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.

View the full Wikipedia page for Accretion (astrophysics)
↑ Return to Menu

Protoplanetary disk in the context of Orion Nebula

The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with an apparent magnitude of 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. M42 is estimated to be 25 light-years across (so its apparent size from Earth is approximately 1 degree). It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

The Orion Nebula is one of the most scrutinized and photographed objects in the night sky and is among the most intensely studied celestial features. The nebula has revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. Astronomers have directly observed protoplanetary disks and brown dwarfs within the nebula, intense and turbulent motions of the gas, and the photo-ionizing effects of massive nearby stars in the nebula.

View the full Wikipedia page for Orion Nebula
↑ Return to Menu

Protoplanetary disk in the context of Origin of water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance (known as the habitable zone) from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

It was long thought that Earth's water did not originate from the planet's region of the protoplanetary disk. Instead, it was hypothesized water and other volatiles must have been delivered to Earth from the outer Solar System later in its history. Recent research, however, indicates that hydrogen inside the Earth played a role in the formation of the ocean. The two ideas are not mutually exclusive, as there is also evidence that water was delivered to Earth by impacts from icy planetesimals similar in composition to asteroids in the outer edges of the asteroid belt.

View the full Wikipedia page for Origin of water on Earth
↑ Return to Menu

Protoplanetary disk in the context of Age of Earth

The age of Earth is estimated to be 4.54 ± 0.05 billion years. This age represents the final stages of Earth's accretion and planetary differentiation. Age estimates are based on evidence from radiometric age-dating of meteoritic material—consistent with the radiometric ages of the oldest-known terrestrial material and lunar samples—and astrophysical accretion models consistent with observations of planet formation in protoplanetary disks.

Following the development of radiometric dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old. The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old. Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.5673 ± 0.00016 billion years old giving a lower limit for the age of the Solar System.

View the full Wikipedia page for Age of Earth
↑ Return to Menu

Protoplanetary disk in the context of Solar nebula

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, chemistry, geology, physics, and planetary science. Since the dawn of the Space Age in the 1950s and the discovery of exoplanets in the 1990s, the model has been both challenged and refined to account for new observations.

View the full Wikipedia page for Solar nebula
↑ Return to Menu

Protoplanetary disk in the context of Protoplanet

A protoplanet or planetary embryo is an astronomical body originated within a protoplanetary disk that has undergone internal melting to produce a differentiated interior.

Protoplanets are thought to form out of kilometer-sized planetesimals that gravitationally perturb each other's orbits and collide, gradually coalescing into larger bodies through a process known as "runaway growth". Once accumulated enough mass, protoplanets will begin to assume a spherical shape due to hydrostatic equilibrium and become dwarf planets, those of which that subsequently succeed in dominating their own orbit will become planets proper.

View the full Wikipedia page for Protoplanet
↑ Return to Menu

Protoplanetary disk in the context of Hadean Eon

The Hadean (/hˈdən, ˈhdiən/ hay-DEE-ən, HAY-dee-ən) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6 Ga (estimated 4567.30 ± 0.16 Ma set by the age of the oldest solid material in the Solar Systemprotoplanetary disk dust particles—found as chondrules and calcium–aluminium-rich inclusions in some meteorites about 4.567 Ga), and ending 4.031 Ga, the age of the oldest known intact rock formations on Earth as recognized by the International Commission on Stratigraphy. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

Hadean rocks are very rare, largely consisting of granular zircons from one locality (Jack Hills) in Western Australia. Hadean geophysical models remain controversial among geologists: plate tectonics and the growth of cratons into continents may have started in the Hadean, but there is still uncertainty.

View the full Wikipedia page for Hadean Eon
↑ Return to Menu

Protoplanetary disk in the context of Late Heavy Bombardment

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized astronomical event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided into the terrestrial planets and their natural satellites in the inner Solar System, including Mercury, Venus, Earth (and the Moon) and Mars. These came from both post-accretion and planetary instability-driven populations of impactors. Although it has gained widespread credence, definitive evidence remains elusive.

Evidence for the LHB derives from moon rock samples of Lunar craters brought back by the Apollo program astronauts. Isotopic dating showed that the rocks were last molten during impact events in a rather narrow interval of time, suggesting that a large proportion of craters were formed during this period. Several hypotheses attempt to explain this apparent spike in the flux of impactors in the inner Solar System, but no consensus yet exists. The Nice model, popular among planetary scientists, postulates that the giant planets underwent orbital migration, scattering objects from the asteroid belt, Kuiper belt, or both, into eccentric orbits and into the path of the terrestrial planets.

View the full Wikipedia page for Late Heavy Bombardment
↑ Return to Menu

Protoplanetary disk in the context of Frost line (astrophysics)

In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals. Beyond the line, otherwise gaseous compounds (which are much more abundant) can be quite easily condensed to allow formation of gas giants and ice giants; while within it, only heavier compounds can be accreted to form the typically much smaller rocky planets.

The term itself is borrowed from the notion of "frost line" in soil science, which describes the maximum depth from the surface that groundwater can freeze.

View the full Wikipedia page for Frost line (astrophysics)
↑ Return to Menu

Protoplanetary disk in the context of Primitive rock

Terrestrial rocks are formed by three main mechanisms:

  • Sedimentary rocks are formed through the gradual accumulation of sediments: for example, sand on a beach or mud on a river bed. As the sediments are buried they get compacted as more and more material is deposited on top. Eventually the sediments will become so dense that they would essentially form a rock. This process is known as lithification.
  • Igneous rocks have crystallised from a melt or magma. The melt is made up of various components of pre-existing rocks which have been subjected to melting either at subduction zones or within the Earth's mantle. The melt is hot and so passes upward through cooler country rock. As it moves, it cools and various rock types will form through a process known as fractional crystallisation. Igneous rocks can be seen at mid-ocean ridges, areas of island arc volcanism or in intra-plate hotspots.
  • Metamorphic rocks once existed as igneous or sedimentary rocks, but have been subjected to varying degrees of pressure and heat within the Earth's crust. The processes involved will change the composition and fabric of the rock and their original nature is often hard to distinguish. Metamorphic rocks are typically found in areas of mountain building.

Rock can also form in the absence of a substantial pressure gradient as material that condensed from a protoplanetary disk, without ever undergoing any transformations in the interior of a large object such as a planet or moon. Astrophysicists classify this as a fourth type of rock: primitive rock. This type is common in asteroids and meteorites.

View the full Wikipedia page for Primitive rock
↑ Return to Menu

Protoplanetary disk in the context of Early Earth

Early Earth, also known as Proto-Earth, is loosely defined as Earth in the first one billion years — or gigayear (10 y or Ga) — of its geological history, from its initial formation in the young Solar System at about 4.55 billion years ago (Gya), to the end of the Eoarchean era at approximately 3.5 Gya. On the geologic time scale, this comprises all of the Hadean eon and approximately one-third of the Archean eon, starting with the formation of the Earth about 4.6 Gya, and ended at the start of the Paleoarchean era 3.6 Gya.

This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion, and transition of the Earth's atmosphere from a hydrogen/helium-predominant primary atmosphere collected from the protoplanetary disk to a reductant secondary atmosphere rich in nitrogen, methane and CO2. This time period included intense impact events as the young Proto-Earth, a protoplanet of about 0.63 Earth masses, began clearing the neighborhood, including the early Moon-forming collision with Theia — a Mars-sized co-orbital planet likely perturbed from the L4 Lagrange point — around 0.032 Ga after formation of the Solar System, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, meteorites or comets from the Outer Solar System might have delivered water and other volatile compounds to the Earth's mantle, crust and ancient atmosphere in an intense "late veneer" bombardment. As the Earth's planetary surface eventually cooled and formed a stable but evolving crust during the end-Hadean, most of the water vapor condensed out of the atmosphere and precipitated into a superocean that covered nearly all of the Earth's surface, transforming the initially lava planet Earth of the Hadean into an ocean planet at the early Archean, where the earliest known life forms appeared soon afterwards.

View the full Wikipedia page for Early Earth
↑ Return to Menu