Polymers in the context of Halogenation


Polymers in the context of Halogenation

Polymers Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Polymers in the context of "Halogenation"


⭐ Core Definition: Polymers

A polymer (/ˈpɒlɪmər/) is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polymers are studied in the fields of polymer science (which includes polymer chemistry and polymer physics), biophysics and materials science and engineering. Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science. An emerging important area now focuses on supramolecular polymers formed by non-covalent links. Polyisoprene of latex rubber is an example of a natural polymer, and the polystyrene of styrofoam is an example of a synthetic polymer. In biological contexts, essentially all biological macromolecules—i.e., proteins (polyamides), nucleic acids (polynucleotides), and polysaccharides—are purely polymeric, or are composed in large part of polymeric components.

↓ Menu
HINT:

In this Dossier

Polymers in the context of Corrosion-resistant

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In the most common use of the word, this means electrochemical oxidation of a metal reacting with an oxidant such as oxygen (O2, gaseous or dissolved), or H3O ions (H, hydrated protons) present in aqueous solution. Rusting, the formation of red-orange iron oxides, is perhaps the most familiar example of electrochemical corrosion. This type of corrosion typically produces oxides or salts of the original metal and results in a distinctive coloration. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although, in this context, the term degradation is more common. Corrosion degrades the useful properties of materials and structures including mechanical strength, appearance, and permeability to liquids and gases. Corrosive is distinguished from caustic: the former implies mechanical degradation, the latter chemical.

View the full Wikipedia page for Corrosion-resistant
↑ Return to Menu

Polymers in the context of Nucleotide

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymersdeoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

Nucleotides are composed of three subunit molecules: a nucleobase, a five-carbon sugar (ribose or deoxyribose), and a phosphate group consisting of one to three phosphates. The four nucleobases in DNA are guanine, adenine, cytosine, and thymine; in RNA, uracil is used in place of thymine.

View the full Wikipedia page for Nucleotide
↑ Return to Menu

Polymers in the context of Genetic information

A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides. By convention, sequences are usually presented from the 5' end to the 3' end. For DNA, with its double helix, there are two possible directions for the notated sequence; of these two, the sense strand is used. Because nucleic acids are normally linear (unbranched) polymers, specifying the sequence is equivalent to defining the covalent structure of the entire molecule. For this reason, the nucleic acid sequence is also termed the primary structure.

The sequence represents genetic information. Biological deoxyribonucleic acid represents the information which directs the functions of an organism.

View the full Wikipedia page for Genetic information
↑ Return to Menu

Polymers in the context of Microstructure

Microstructure is the very small-scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (e.g. metals, polymers, ceramics, or composites) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behaviour or wear resistance. These properties in turn govern the application of these materials in industrial practice.

Microstructure at scales smaller than can be viewed with optical microscopes is often called nanostructure, while the structure in which individual atoms are arranged is known as crystal structure. The nanostructure of biological specimens is referred to as ultrastructure.

View the full Wikipedia page for Microstructure
↑ Return to Menu

Polymers in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

View the full Wikipedia page for Acetate
↑ Return to Menu

Polymers in the context of Speciality chemicals

Specialty chemicals (also called specialties or effect chemicals) are particular chemical products that provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

Speciality chemicals are materials used on the basis of their performance or function. Consequently, in addition to "effect" chemicals they are sometimes referred to as "performance" chemicals or "formulation" chemicals. They can be unique molecules or mixtures of molecules known as formulations. The physical and chemical characteristics of the single molecules or the formulated mixtures of molecules and the composition of the mixtures influences the performance end product. In commercial applications the companies providing these products more often than not provide targeted customer service to innovative individual technical solutions for their customers. This is a differentiating component of the service provided by speciality chemical producers when they are compared to the other sub-sectors of the chemical industry such as fine chemicals, commodity chemicals, petrochemicals and pharmaceuticals.

View the full Wikipedia page for Speciality chemicals
↑ Return to Menu

Polymers in the context of Hydrogen cyanide

Hydrogen cyanide (also called prussic acid) is a chemical compound with the formula HCN and structural formula H−C≡N. It is a highly toxic and flammable liquid that boils slightly above room temperature, at 25.6 °C (78.1 °F). HCN is produced on an industrial scale and is a highly valued precursor to many chemical compounds ranging from polymers to pharmaceuticals. Large-scale applications are for the production of potassium cyanide and adiponitrile, used in mining and plastics, respectively. It is more toxic than solid cyanide compounds due to its volatile nature. A solution of hydrogen cyanide in water, represented as HCN(aq), is called hydrocyanic acid. The salts of the cyanide anion are known as cyanides.

Whether hydrogen cyanide is an organic compound or not is a topic of debate among chemists. It is traditionally considered inorganic, but can also be considered a nitrile, giving rise to its alternative names of methanenitrile and formonitrile.

View the full Wikipedia page for Hydrogen cyanide
↑ Return to Menu

Polymers in the context of Lint remover

A lint roller or lint remover is a roll of one-sided adhesive paper on a cardboard or plastic barrel that is mounted on a central spindle, with an attached handle. The device facilitates the removal of lint or other small fibers from most materials such as clothing, upholstery and linen. Once expended, the roll can typically be replaced with a "refill" roll. Invented in 1956 by Nicholas McKay, Sr., his most well-known (and first commercial) product was the Lint Pic-Up, the world's first lint roller.

Reusable lint rollers use elastomers, including silicones and polystyrene-ethylene-butylene-styrene as a reusable tacky surface. The material is similar to polymers used in walking toys such as Wacky WallWalker.

View the full Wikipedia page for Lint remover
↑ Return to Menu

Polymers in the context of Self-healing material

Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damages to themselves without any external diagnosis of the problem or human intervention. Generally, materials will degrade over time due to fatigue, environmental conditions, or damage incurred during operation. Cracks and other types of damage on a microscopic level have been shown to change thermal, electrical, and acoustical properties of materials, and the propagation of cracks can lead to eventual failure of the material. In general, cracks are hard to detect at an early stage, and manual intervention is required for periodic inspections and repairs. In contrast, self-healing materials counter degradation through the initiation of a repair mechanism that responds to the micro-damage. Some self-healing materials are classed as smart structures, and can adapt to various environmental conditions according to their sensing and actuation properties.

Although the most common types of self-healing materials are polymers or elastomers, self-healing covers all classes of materials, including metals, ceramics, and cementitious materials. Healing mechanisms vary from an instrinsic repair of the material to the addition of a repair agent contained in a microscopic vessel. For a material to be strictly defined as autonomously self-healing, it is necessary that the healing process occurs without human intervention. Self-healing polymers may, however, activate in response to an external stimulus (light, temperature change, etc.) to initiate the healing processes.

View the full Wikipedia page for Self-healing material
↑ Return to Menu

Polymers in the context of Amyloid plaques

Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of amyloid beta (Aβ) protein that present mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease.

The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve, with an average plaque area of 400–450 square micrometers (μm). The smallest plaques (less than 200 μm), which often consist of diffuse deposits of Aβ, are particularly numerous. Plaques form when Aβ misfolds and aggregates into oligomers and longer polymers, the latter of which are characteristic of amyloid.

View the full Wikipedia page for Amyloid plaques
↑ Return to Menu

Polymers in the context of Reticulorumen

The reticulorumen (UK: /rəˈtɪkjʊləˌrmən/; rə-TIK-yuu-lə-roo-mən) represents the first two chambers in the alimentary canal of ruminant animals. It is composed of the rumen and reticulum. The reticulum differs from the rumen with regard to the texture of its lining. The rumen wall is covered in small, finger-like projections called papillae, whereas the reticulum is lined with ridges that form a hexagonal honeycomb pattern. The ridges are approximately 0.1–0.2 mm wide and are raised 0.5 cm above the reticulum wall. The hexagons in the reticulum are approximately 2–5 cm wide in cattle. Despite the differences in the texture of the lining of the two parts of the reticulorumen, it represents one functional space.

Microbial fermentation degrades otherwise indigestible polymers in the reticulorumen to volatile fatty acids (VFAs), methane, and carbon dioxide. This fermentation is anaerobic, and allows the microbes in the reticulorumen to derive energy and amino nitrogen for growth and reproduction. Ruminants absorb the VFAs across the reticulorumen wall as an energy source, while the microbes eventually flow out of the rumen into the remainder of the alimentary canal, where their constituent proteins are eventually digested and absorbed. The reticulum, at approximately 5–20 litres, is considerably smaller in capacity than the rumen, which is approximately 100–200 litres in cattle. The oesophageal groove, which links the oesophagus and the omasum, is located in the reticulum.

View the full Wikipedia page for Reticulorumen
↑ Return to Menu

Polymers in the context of Halogenated

In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (F2, Cl2, Br2, I2). Halides are also commonly introduced using halide salts and hydrogen halide acids. Many specialized reagents exist for introducing halogens into diverse substrates, e.g. thionyl chloride.

View the full Wikipedia page for Halogenated
↑ Return to Menu