Neurofibrillary tangles (NFTs) are intracellular aggregates of hyperphosphorylated tau protein that are most commonly known as a primary biomarker of Alzheimer's disease. NFTs also are present in numerous other diseases known collectively as tauopathies. Little is known about their exact relationship to the different pathologies, but it is typically recognized that tauopathy is an important factor in the pathogenesis of several neurodegenerative diseases.
NFTs consist primarily of a misfolded, hyperphosphorylated microtubule-associated protein known as tau, which abnormally polymerizes into insoluble filaments within cells. Under the electron microscope, these polymers of tau are seen to take two basic forms: paired helical filaments (PHFs) and straight filaments. These basic types of tau filaments can vary structurally, especially in different tauopathies. The filaments bundle together to form the neurofibrillary tangles that are evident under the light microscope. Classical NFTs are located within the neuronal cell body, although it is now recognized that abnormal, filamentous tau occurs also in neuronal dendrites and axons (referred to as neuropil threads) and the dystrophic (abnormal) neurites that surround neuritic Abeta plaques. Mature NFTs in cell bodies can have a torch-like or globose appearance, depending on the type of neuron involved. When tangle-containing neurons die, the tangles can remain in the neuropil as extracellular "ghost tangles".