Ultrastructure in the context of "Microstructure"

Play Trivia Questions online!

or

Skip to study material about Ultrastructure in the context of "Microstructure"

Ad spacer

⭐ Core Definition: Ultrastructure

Ultrastructure (or ultra-structure) is the architecture of cells and biomaterials that is visible at higher magnifications than found on a standard optical light microscope. This traditionally meant the resolution and magnification range of a conventional transmission electron microscope (TEM) when viewing biological specimens such as cells, tissue, or organs. Ultrastructure can also be viewed with scanning electron microscopy and super-resolution microscopy, although TEM is a standard histology technique for viewing ultrastructure. Such cellular structures as organelles, which allow the cell to function properly within its specified environment, can be examined at the ultrastructural level.

Ultrastructure, along with molecular phylogeny, is a reliable phylogenetic way of classifying organisms. Features of ultrastructure are used industrially to control material properties and promote biocompatibility.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Ultrastructure in the context of Microstructure

Microstructure is the very small-scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25Γ— magnification. The microstructure of a material (e.g. metals, polymers, ceramics, or composites) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behaviour or wear resistance. These properties in turn govern the application of these materials in industrial practice.

Microstructure at scales smaller than can be viewed with optical microscopes is often called nanostructure, while the structure in which individual atoms are arranged is known as crystal structure. The nanostructure of biological specimens is referred to as ultrastructure.

↓ Explore More Topics
In this Dossier

Ultrastructure in the context of Ulvophyceae

The Ulvophyceae or ulvophytes are a class of green algae, distinguished mainly on the basis of ultrastructural morphology, life cycle and molecular phylogenetic data. The sea lettuce, Ulva, belongs here. Other well-known members include Caulerpa, Codium, Acetabularia, Cladophora, Trentepohlia and Monostroma.

The Ulvophytes are diverse in their morphology and their habitat. Most are seaweeds such as those listed above. Others, such as Rhizoclonium, Pithophora and some species of Cladophora live in fresh water and in some areas are considered weeds.

↑ Return to Menu

Ultrastructure in the context of Nannochloropsis

Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.

The algae of the genus Nannochloropsis differ from other related microalgae in that they have chlorophyll a and completely lack chlorophyll b and chlorophyll c. In addition they are able to build up a high concentrations of a range of pigments such as astaxanthin, zeaxanthin and canthaxanthin. They have a diameter of about 2 to 3 micrometers and a very simple ultrastructure with reduced structural elements compared to neighbouring taxa.

↑ Return to Menu

Ultrastructure in the context of Blastocladiomycota

Blastocladiomycota is part of a group of saprotrophic fungus that is one of the currently recognized phyla within the kingdom Fungi. Blastocladiomycota was originally the order Blastocladiales within the phylum Chytridiomycota until molecular and zoospore ultrastructural characters were used to demonstrate it was not monophyletic with Chytridiomycota. The order was first erected by Petersen for a single genus, Blastocladia, which was originally considered a member of the oomycetes. Accordingly, members of Blastocladiomycota are often referred to colloquially as "chytrids." However, some feel "chytrid" should refer only to members of Chytridiomycota. Thus, members of Blastocladiomycota are commonly called "blastoclads" by mycologists. Alternatively, members of Blastocladiomycota, Chytridiomycota, and Neocallimastigomycota lumped together as the zoosporic true fungi. Blastocladiomycota contains 5 families and approximately 12 genera. This early diverging branch of kingdom Fungi is the first to exhibit alternation of generations. As well, two (once) popular model organismsβ€”Allomyces macrogynus and Blastocladiella emersoniiβ€”belong to this phylum.

↑ Return to Menu