Radical (chemistry) in the context of "Acetate"

Play Trivia Questions online!

or

Skip to study material about Radical (chemistry) in the context of "Acetate"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Radical (chemistry) in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

↓ Explore More Topics
In this Dossier

Radical (chemistry) in the context of Polyatomic ion

A polyatomic ion (also known as a molecular ion) is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that usually has a net charge that is not zero, or in special case of zwitterion where spatially separated charges where the net charge may be variable depending on acidity conditions. The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic. There may be more than one atom in the structure that has non-zero charge, therefore the net charge of the structure may have a cationic (positive) or anionic nature depending on those atomic details.

In older literature, a polyatomic ion may instead be referred to as a radical (or less commonly, as a radical group). In contemporary usage, the term radical refers to various free radicals, which are species that have an unpaired electron and need not be charged.

↑ Return to Menu

Radical (chemistry) in the context of Dioxygen

There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are:

↑ Return to Menu

Radical (chemistry) in the context of Combustion

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion (e.g., using a lit match to light a fire), the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction which is commonly used to fuel rocket engines. This reaction releases 242Β kJ/mol of heat and reduces the enthalpy accordingly (at constant temperature and pressure):

↑ Return to Menu

Radical (chemistry) in the context of Dissociate

Dissociation in chemistry is a general process in which molecules (or ionic compounds such as salts, or complexes) separate or split into other things such as atoms, ions, or radicals, usually in a reversible manner. For instance, when an acid dissolves in water, a covalent bond between an electronegative atom and a hydrogen atom is broken by heterolytic fission, which gives a proton (H) and a negative ion. Dissociation is the opposite of association or recombination.

↑ Return to Menu

Radical (chemistry) in the context of Sesquioxide

A sesquioxide is an oxide of an element (or radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide Al2O3 and phosphorus(III) oxide P4O6 are sesquioxides.Many sesquioxides contain a metal in the +3 oxidation state and the oxide ion O, e.g., aluminium oxide Al2O3, lanthanum(III) oxide La2O3 and iron(III) oxide Fe2O3. Sesquioxides of iron and aluminium are found in soil. The alkali metal sesquioxides are exceptions because they contain both peroxide O2βˆ’2 and superoxide Oβˆ’2 ions, e.g., rubidium sesquioxide Rb4O6 is formulated (Rb)4(O2βˆ’2)(Oβˆ’2)2. Sesquioxides of metalloids and nonmetals are better formulated as covalent, e.g. boron trioxide B2O3, dinitrogen trioxide N2O3 and phosphorus(III) oxide P4O6; chlorine trioxide Cl2O3 and bromine trioxide Br2O3 do not have oxidation state +3 on the halogen.

Many transition metal oxides crystallize in the corundum structure type, with space group R3c. Sesquioxides of rare earth elements crystalize into one or more of three crystal structures: hexagonal (type A, space group P3m1), monoclinic (type B, space group C2/m), or body-centered cubic (type C, space group Ia3).

↑ Return to Menu

Radical (chemistry) in the context of Hydroxyl

In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula βˆ’OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy groups. Both the negatively charged anion HO, called hydroxide, and the neutral radical HOΒ·, known as the hydroxyl radical, consist of an unbonded hydroxy group.

According to IUPAC definitions, the term hydroxyl refers to the hydroxyl radical (Β·OH) only, while the functional group βˆ’OH is called a hydroxy group.

↑ Return to Menu

Radical (chemistry) in the context of Molecular entity

In chemistry and physics, a molecular entity, or chemical entity, is "any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc., identifiable as a separately distinguishable entity". A molecular entity is any singular entity, irrespective of its nature, used to concisely express any type of chemical particle that can exemplify some process: for example, atoms, molecules, ions, etc. can all undergo a chemical reaction.

Chemical species is the macroscopic equivalent of molecular entity and refers to sets or ensembles of molecular entities.

↑ Return to Menu

Radical (chemistry) in the context of Antioxidant

Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants are frequently added to industrial products, such as polymers, fuels, and lubricants, to extend their usable lifetimes. Foods are also treated with antioxidants to prevent spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol, or bacillithiol, and enzyme systems like superoxide dismutase, inhibit damage from oxidative stress.

Dietary antioxidants are vitamins A, C, and E, but the term has also been applied to various compounds that exhibit antioxidant properties in vitro, having little evidence for antioxidant properties in vivo. Dietary supplements marketed as antioxidants have not been shown to maintain health or prevent disease in humans.

↑ Return to Menu