Polymer chemistry in the context of "Prepolymer"

Play Trivia Questions online!

or

Skip to study material about Polymer chemistry in the context of "Prepolymer"

Ad spacer

⭐ Core Definition: Polymer chemistry

Polymer chemistry is a sub-discipline of chemistry that focuses on the structures, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules. However, polymer chemistry is typically related to synthetic and organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, such as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Polymer chemistry in the context of Polymer

A polymer (/ˈpɒlɪmər/) is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polymers are studied in the fields of polymer science (which includes polymer chemistry and polymer physics), biophysics and materials science and engineering. Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science. An emerging important area now focuses on supramolecular polymers formed by non-covalent links. Polyisoprene of latex rubber is an example of a natural polymer, and the polystyrene of styrofoam is an example of a synthetic polymer. In biological contexts, essentially all biological macromolecules—i.e., proteins (polyamides), nucleic acids (polynucleotides), and polysaccharides—are purely polymeric, or are composed in large part of polymeric components.

↑ Return to Menu

Polymer chemistry in the context of Curing (chemistry)

Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term "curing" can be used for all the processes where a solid product is obtained from a liquid solution, such as with PVC plastisols.

↑ Return to Menu

Polymer chemistry in the context of Silicone

In organosilicon and polymer chemistry, a silicone or polysiloxane is a polymer composed of repeating units of siloxane (−O−R2Si−O−SiR2, where "R" stands for an organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking utensils, thermal insulation, and electrical insulation. Some common forms include silicone oil, grease, rubber, resin, and caulk.

Silicone is often confused with one of its constituent elements, silicon, but they are distinct substances. Silicon is a pure chemical element, a metalloid, which forms a dark-grey semiconducting crystalline solid. In its crystalline form it is used to make integrated circuits ("electronic chips") and solar cells. In contrast, silicone is formed by the polymerization of the siloxane molecule, which itself is made up of a variable combination of carbon, hydrogen, oxygen and silicon atoms. Depending on the chemical makeup and polymer structure of a particular silicone product, it can possess a variety of physical properties, ranging from an oily liquid to a rubbery resin.

↑ Return to Menu

Polymer chemistry in the context of Cross-link

In chemistry and biology, a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers (such as proteins).

In polymer chemistry "cross-linking" usually refers to the use of cross-links to promote a change in the polymers' physical properties.

↑ Return to Menu

Polymer chemistry in the context of Polymerize

In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them.

In chemical compounds, polymerization can occur via a variety of reaction mechanisms that vary in complexity due to the functional groups present in the reactants and their inherent steric effects. In more straightforward polymerizations, alkenes form polymers through relatively simple radical reactions; in contrast, reactions involving substitution at a carbonyl group require more complex synthesis due to the way in which reactants polymerize.

↑ Return to Menu

Polymer chemistry in the context of Repeat unit

A repeat unit or repeating unit , or mer, is a part of a polymer whose repetition would produce the complete polymer chain (except for the end groups) by linking the repeat units together successively along the chain, like the beads of a necklace.

A repeat unit is sometimes called a mer (or mer unit) in polymer chemistry. "Mer" originates from the Greek word meros, which means "a part". The word polymer derives its meaning from this, which means "many mers". The mer is not the same thing as a monomer—a mer is a repeating unit within a larger molecule, whereas a monomer is an actual molecule that exists independently, either prior to polymerization or after decomposition.

↑ Return to Menu