Polymerization in the context of "Polymer"

Play Trivia Questions online!

or

Skip to study material about Polymerization in the context of "Polymer"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Polymerization in the context of Polymer

A polymer (/ˈpɒlɪmər/) is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polymers are studied in the fields of polymer science (which includes polymer chemistry and polymer physics), biophysics and materials science and engineering. Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science. An emerging important area now focuses on supramolecular polymers formed by non-covalent links. Polyisoprene of latex rubber is an example of a natural polymer, and the polystyrene of styrofoam is an example of a synthetic polymer. In biological contexts, essentially all biological macromolecules—i.e., proteins (polyamides), nucleic acids (polynucleotides), and polysaccharides—are purely polymeric, or are composed in large part of polymeric components.

↓ Explore More Topics
In this Dossier

Polymerization in the context of Melting

Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.

Substances in the molten state generally have reduced viscosity as the temperature increases. An exception to this principle is elemental sulfur, whose viscosity increases in the range of 130 °C to 190 °C due to polymerization.

↑ Return to Menu

Polymerization in the context of Monomer

A monomer (/ˈmɒnəmər/ MON-ə-mər; mono-, "one" + -mer, "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization.

↑ Return to Menu

Polymerization in the context of Para-aramid

Aramid, or aromatic polyamide fibers are a class of strong, heat-resistant, synthetic fibers, commonly used in aerospace and military applications - e.g., ballistic-rated body armor fabric and ballistic composites, marine cordage and hull reinforcement - as a substitute for asbestos, and in lightweight consumer items, such as phone cases and tennis rackets.

Individual amide molecules forming the aramid chain polymerise in the direction of the fiber axis, lending greater structural integrity to the resulting fiber. This is due to the higher proportion of chemical bonds which contribute to the physical strength and thermal resistance (melting point >500 °C (932 °F)) versus other synthetic fibres, such as nylon.

↑ Return to Menu

Polymerization in the context of Silicone

In organosilicon and polymer chemistry, a silicone or polysiloxane is a polymer composed of repeating units of siloxane (−O−R2Si−O−SiR2, where "R" stands for an organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking utensils, thermal insulation, and electrical insulation. Some common forms include silicone oil, grease, rubber, resin, and caulk.

Silicone is often confused with one of its constituent elements, silicon, but they are distinct substances. Silicon is a pure chemical element, a metalloid, which forms a dark-grey semiconducting crystalline solid. In its crystalline form it is used to make integrated circuits ("electronic chips") and solar cells. In contrast, silicone is formed by the polymerization of the siloxane molecule, which itself is made up of a variable combination of carbon, hydrogen, oxygen and silicon atoms. Depending on the chemical makeup and polymer structure of a particular silicone product, it can possess a variety of physical properties, ranging from an oily liquid to a rubbery resin.

↑ Return to Menu

Polymerization in the context of Formaldehyde

Formaldehyde (/fɔːrˈmældɪhd/ for-MAL-di-hide, US also /fər-/ fər-) (systematic name methanal) is an organic compound with the chemical formula CH2O and structure H2C=O. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as aqueous solutions (formalin), which consists mainly of the hydrate CH2(OH)2. It is the simplest of the aldehydes (R−CHO). As a precursor to many other materials and chemical compounds, in 2006 the global production of formaldehyde was estimated at 12 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings.

Formaldehyde also occurs naturally. It is derived from the degradation of serine, dimethylglycine, and lipids. Demethylases act by converting N-methyl groups to formaldehyde.

↑ Return to Menu

Polymerization in the context of Tung oil

Tung oil or China wood oil is a drying oil obtained by pressing the seed from the nut of the tung tree (Vernicia fordii). Tung oil hardens upon exposure to air (through polymerization), and the resulting coating is transparent and has a deep, almost wet look. Used mostly for finishing and protecting wood, after numerous coats, the finish can even look plastic-like. Related drying oils include linseed, safflower, poppy, and soybean oils. Raw tung oil tends to dry to a fine, wrinkled finish. This property was used to make wrinkle finishes, usually by adding excess cobalt drier. To prevent wrinkling, the oil is heated to gas-proof it (also known as "boiled").

"Tung oil finish" is often used by paint and varnish manufacturers as a generic name for any wood-finishing product that contains the real tung oil or provides a finish that resembles the finish obtained with tung oil.

↑ Return to Menu

Polymerization in the context of Repeat unit

A repeat unit or repeating unit , or mer, is a part of a polymer whose repetition would produce the complete polymer chain (except for the end groups) by linking the repeat units together successively along the chain, like the beads of a necklace.

A repeat unit is sometimes called a mer (or mer unit) in polymer chemistry. "Mer" originates from the Greek word meros, which means "a part". The word polymer derives its meaning from this, which means "many mers". The mer is not the same thing as a monomer—a mer is a repeating unit within a larger molecule, whereas a monomer is an actual molecule that exists independently, either prior to polymerization or after decomposition.

↑ Return to Menu