Repeat unit in the context of "Polymer chemistry"

Play Trivia Questions online!

or

Skip to study material about Repeat unit in the context of "Polymer chemistry"

Ad spacer

⭐ Core Definition: Repeat unit

A repeat unit or repeating unit , or mer, is a part of a polymer whose repetition would produce the complete polymer chain (except for the end groups) by linking the repeat units together successively along the chain, like the beads of a necklace.

A repeat unit is sometimes called a mer (or mer unit) in polymer chemistry. "Mer" originates from the Greek word meros, which means "a part". The word polymer derives its meaning from this, which means "many mers". The mer is not the same thing as a monomer—a mer is a repeating unit within a larger molecule, whereas a monomer is an actual molecule that exists independently, either prior to polymerization or after decomposition.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Repeat unit in the context of Polymer

A polymer (/ˈpɒlɪmər/) is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polymers are studied in the fields of polymer science (which includes polymer chemistry and polymer physics), biophysics and materials science and engineering. Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science. An emerging important area now focuses on supramolecular polymers formed by non-covalent links. Polyisoprene of latex rubber is an example of a natural polymer, and the polystyrene of styrofoam is an example of a synthetic polymer. In biological contexts, essentially all biological macromolecules—i.e., proteins (polyamides), nucleic acids (polynucleotides), and polysaccharides—are purely polymeric, or are composed in large part of polymeric components.

↑ Return to Menu

Repeat unit in the context of Polyacrylonitrile

Polyacrylonitrile (PAN) is a synthetic, semicrystalline organic polymer resin, with the linear formula (CH2CHCN)n. Almost all PAN resins are copolymers with acrylonitrile as the main monomer. PAN is used to produce large variety of products including ultra filtration membranes, hollow fibers for reverse osmosis, fibers for textiles, and oxidized PAN fibers. PAN fibers are the chemical precursor of very high-quality carbon fiber. PAN is first thermally oxidized in air at 230 °C to form an oxidized PAN fiber and then carbonized above 1000 °C in inert atmosphere to make carbon fibers found in a variety of both high-tech and common daily applications such as civil and military aircraft primary and secondary structures, missiles, solid propellant rocket motors, pressure vessels, fishing rods, tennis rackets and bicycle frames. It is a component repeat unit in several important copolymers, such as styrene-acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS) plastic.

↑ Return to Menu