Phloem in the context of "Sap"

Play Trivia Questions online!

or

Skip to study material about Phloem in the context of "Sap"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Phloem in the context of Sap

Sap is a fluid transported in the xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant.

Sap is distinct from latex, resin, or cell sap; it is a separate substance, separately produced, and with different components and functions.

↓ Explore More Topics
In this Dossier

Phloem in the context of Algae

Algae (/ˈæl/ AL-jee, UK also /ˈælɡ/ AL-ghee; sg.: alga /ˈælɡə/ AL-gə) is an informal term for any organisms of a large and diverse group of photosynthetic organisms that are not land plants, and includes species from multiple distinct clades. Such organisms range from unicellular microalgae, such as cyanobacteria, Chlorella, and diatoms, to multicellular macroalgae such as kelp or brown algae which may grow up to 50 metres (160 ft) in length. Most algae are aquatic organisms and lack many of the distinct cell and tissue types, such as stomata, xylem, and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds. In contrast, the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried passively by water are plankton, specifically phytoplankton.

Algae constitute a polyphyletic group because they do not include a common ancestor, and although eukaryotic algae with chlorophyll-bearing plastids seem to have a single origin (from symbiogenesis with cyanobacteria), they were acquired in different ways. Green algae are a prominent example of algae that have primary chloroplasts derived from endosymbiont cyanobacteria. Diatoms and brown algae are examples of algae with secondary chloroplasts derived from endosymbiotic red algae, which they acquired via phagocytosis. Algae exhibit a wide range of reproductive strategies, from simple asexual cell division to complex forms of sexual reproduction via spores.

↑ Return to Menu

Phloem in the context of Bamboo

Bamboos are a diverse group of mostly evergreen perennial flowering plants making up the subfamily Bambusoideae of the grass family Poaceae. Giant bamboos are the largest members of the grass family, in the case of Dendrocalamus sinicus having individual stalks (culms) reaching a length of 46 meters (151 ft), up to 36 centimeters (14 in) in thickness and a weight of up to 450 kilograms (1,000 lb). The internodes of bamboos can also be of great length. Kinabaluchloa wrayi has internodes up to 2.5 meters (8 ft) in length. and Arthrostylidium schomburgkii has internodes up to 5 meters (16 ft) in length, exceeded in length only by papyrus. By contrast, the stalks of the tiny bamboo Raddiella vanessiae of the savannas of French Guiana measure only 10–20 millimeters (0.4–0.8 in) in length by about 2 millimeters (0.08 in) in width. The origin of the word "bamboo" is uncertain, but it most likely comes from the Dutch or Portuguese language, which originally borrowed it from Malay.

In bamboo, as in other grasses, the internodal regions of the stem are usually hollow and the vascular bundles in the cross-section are scattered throughout the walls of the stalk instead of in a cylindrical cambium layer between the bark (phloem) and the wood (xylem) as in dicots and conifers. The dicotyledonous woody xylem is also absent. The absence of secondary growth wood causes the stems of monocots, including the palms and large bamboos, to be columnar rather than tapering.

↑ Return to Menu

Phloem in the context of Plant stem

A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, engages in photosynthesis, stores nutrients, and produces new living tissue. The stem can also be called the culm, halm, haulm, stalk, or thyrsus.

The stem is normally divided into nodes and internodes:

↑ Return to Menu

Phloem in the context of Trunk (botany)

Trunks, also called boles, are the stems of woody plants and the main structural element of trees. The woody part of the trunk consists of dead but structurally significant heartwood and living sapwood, which is used for nutrient storage and transport. Separating the wood from the bark is the cambium, from which trunks grow in diameter. Bark is divided between the living inner bark (the phloem), which transports sugars, and the outer bark, which is a dead protective layer.

The precise cellular makeup of these components differs between non-flowering plants (gymnosperms) and flowering plants (angiosperms). A variety of specialised cells facilitate the storage of carbohydrates, water, minerals, and transport of water, minerals, and hormones around the plant. Growth is achieved by division of these cells. Vertical growth is generated from the apical meristems (stem tips), and horizontal (radial) growth, from the cambium. Growth is controlled by hormones, which send chemical signals for how and when to grow.

↑ Return to Menu

Phloem in the context of Pith

Pith, or medulla, is a tissue in the stems of vascular plants. Pith is composed of soft, spongy parenchyma cells, which in some cases can store starch. In eudicotyledons, pith is located in the center of the stem. In monocotyledons, it extends only into roots. The pith is encircled by a ring of xylem; the xylem, in turn, is encircled by a ring of phloem.

While new pith growth is usually white or pale in color, as the tissue ages it commonly darkens to a deeper brown color. In trees pith is generally present in young growth, but in the trunk and older branches the pith often gets replaced – in great part – by xylem. In some plants, the pith in the middle of the stem may dry out and disintegrate, resulting in a hollow stem. A few plants, such as walnuts, have distinctive chambered pith with numerous short cavities. The cells in the peripheral parts of the pith may, in some plants, develop to be different from cells in the rest of the pith. This layer of cells is then called the perimedullary region of the pithamus. An example of this can be observed in Hedera helix, a species of ivy.

↑ Return to Menu

Phloem in the context of Xylem

Xylem is one of the two types of transport tissue in vascular plants, the other being phloem; both of these are part of the vascular bundle. The basic function of the xylem is to transport water upward from the roots to parts of the plants such as stems and leaves, but it also transports nutrients. The word xylem is derived from the Ancient Greek word ξύλον (xúlon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. The term was introduced by Carl Nägeli in 1858.

↑ Return to Menu

Phloem in the context of Vascular plant

Vascular plants (from Latin vasculum 'duct'), also called tracheophytes (UK: /ˈtrækəˌfts/, US: /ˈtrkəˌfts/) or collectively Tracheophyta (/ˌtrkˈɒfɪtə/; from Ancient Greek τραχεῖα ἀρτηρία (trakheîa artēría) 'windpipe' and φυτά (phutá) 'plants'), are plants that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue (the phloem) to conduct products of photosynthesis. The group includes most land plants (c. 300,000 accepted known species) excluding mosses.

Vascular plants include the clubmosses, horsetails, ferns, gymnosperms (including conifers), and angiosperms (flowering plants). They are contrasted with nonvascular plants such as mosses and green algae. Scientific names for the vascular plants group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants (the rhyniophytes) had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones.

↑ Return to Menu

Phloem in the context of Fern

The ferns (Polypodiopsida or Polypodiophyta) are a group of vascular plants (land plants with vascular tissues such as xylem and phloem) that reproduce via spores and have neither seeds nor flowers. They differ from non-vascular plants (mosses, hornworts and liverworts) by having specialized transport bundles that conduct water and nutrients from and to the roots, as well as life cycles in which the branched sporophyte is the dominant phase.

Ferns have complex leaves called megaphylls that are more complex than the microphylls of clubmosses. Most ferns are leptosporangiate ferns that produce coiled fiddleheads that uncoil and expand into fronds. The group includes about 10,560 known extant species. Ferns are defined here in the broad sense, being all of the Polypodiopsida, comprising both the leptosporangiate (Polypodiidae) and eusporangiate ferns, the latter group including horsetails, whisk ferns, marattioid ferns and ophioglossoid ferns.

↑ Return to Menu

Phloem in the context of Non-vascular plant

Non-vascular plants are plants without a vascular system consisting of xylem and phloem. Instead, they may possess simpler tissues that have specialized functions for the internal transport of water.

Non-vascular plants include two distantly related groups:

↑ Return to Menu