Species in the context of "Biocommunication (science)"

⭐ In the context of biocommunication, how is communication defined across different species?

Ad spacer

⭐ Core Definition: Species

A species (pl.species) is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. It can be defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, palaeontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. About 14% of these had been described by 2011. All species (except viruses) are given a two-part name, a "binomen". The first part of a binomen is the name of a genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature, also sometimes in zoological nomenclature). For example, Boa constrictor is one of the species of the genus Boa, with constrictor being the specific name.

While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clonal lineage is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that a fossil lineage should be divided into multiple chronospecies, or when populations have diverged to have enough distinct character states to be described as cladistic species.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Species in the context of Olive trees

The olive (botanical name Olea europaea, "European olive") is a species of subtropical evergreen tree in the family Oleaceae. Originating in Asia Minor, it is abundant throughout the Mediterranean Basin, with wild subspecies in Africa and western Asia; modern cultivars are traced primarily to the Near East, Aegean Sea, and Strait of Gibraltar. The olive is the type species for its genus, Olea, and lends its name to the Oleaceae plant family, which includes lilac, jasmine, forsythia, and ash. The olive fruit is classed botanically as a drupe, similar in structure and function to the cherry or peach. The term oil—now used to describe any viscous water-insoluble liquid—was originally synonymous with olive oil, the liquid fat derived from olives.

The olive has deep historical, economic, and cultural significance in the Mediterranean. It is among the oldest fruit trees domesticated by humans, being first cultivated in the Eastern Mediterranean between 6,000 and 4,000 BC, most likely in the Levant. The olive gradually disseminated throughout the Mediterranean via trade and human migration starting in the 16th century BC; it took root in Crete around 3500 BC and reached Iberia by about 1050 BC. Olive cultivation was vital to the growth and prosperity of various Mediterranean civilizations, from the Minoans and Myceneans of the Bronze Age to the Greeks and Romans of classical antiquity.

↑ Return to Menu

Species in the context of Natural environment

The natural environment or natural world encompasses all biotic and abiotic things occurring naturally, meaning in this case not artificial. The term is most often applied to Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity.The concept of the natural environment can be distinguished as components:

In contrast to the natural environment is the built environment. Built environments are where humans have fundamentally transformed landscapes such as urban settings and agricultural land conversion, the natural environment is greatly changed into a simplified human environment. Even acts which seem less extreme, such as building a mud hut or a photovoltaic system in the desert, the modified environment becomes an artificial one. Though many animals build things to provide a better environment for themselves, they are not human, hence beaver dams and the works of mound-building termites are thought of as natural.

↑ Return to Menu

Species in the context of Marine life

Marine life, sea life or ocean life is the collective ecological communities that encompass all aquatic animals, plants, algae, fungi, protists, single-celled microorganisms and associated viruses living in the saline water of marine habitats, either the sea water of marginal seas and oceans, or the brackish water of coastal wetlands, lagoons, estuaries and inland seas. As of 2023, more than 242,000 marine species have been documented, and perhaps two million marine species are yet to be documented. An average of 2,332 new species per year are being described. Marine life is studied scientifically in both marine biology and in biological oceanography.

By volume, oceans provide about 90% of the living space on Earth, and served as the cradle of life and vital biotic sanctuaries throughout Earth's geological history. The earliest known life forms evolved as anaerobic prokaryotes (archaea and bacteria) in the Archean oceans around the deep sea hydrothermal vents, before photoautotrophs appeared and allowed the microbial mats to expand into shallow water marine environments. The Great Oxygenation Event of the early Proterozoic significantly altered the marine chemistry, which likely caused a widespread anaerobe extinction event but also led to the evolution of eukaryotes through symbiogenesis between surviving anaerobes and aerobes. Complex life eventually arose out of marine eukaryotes during the Neoproterozoic, and which culminated in a large evolutionary radiation event of mostly sessile macrofaunae known as the Avalon Explosion. This was followed in the early Phanerozoic by a more prominent radiation event known as the Cambrian Explosion, where actively moving eumetazoan became prevalent. These marine life also expanded into fresh waters, where fungi and green algae that were washed ashore onto riparian areas started to take hold later during the Ordovician before rapidly expanding inland during the Silurian and Devonian, paving the way for terrestrial ecosystems to develop.

↑ Return to Menu

Species in the context of Population

In biology, a population of organisms is a group of individuals of the same species, defined by a discontinuity or disjunction from other groups of individuals in certain characteristics, such as living area, genetic attributes, demographic structure. Among biologists, the term definition varies, in some cases significantly, and sometimes those variations can be confusing. There are also plenty of other terms to describe groups of individuals if no clear disjunction is present. Commonly, a population can be described by what individuals constitute the population, its size, a geographical area it occupies, and the time within which the population is examined. In qualitative terms, it is usually defined like "a group of organisms of the same species occupying a particular space at a particular time".

The two main approaches to define a population are ecological and evolutionary. From the ecological perspective, individuals are considered interacting and competing in a certain geographic area. From the evolutionary (genetic) perspective, genes and reproduction are considered the driving forces of a population. Since each population has its own gene pool that changes and adapts to the environment over time, the population is considered to be the main organizational unit in biology.

↑ Return to Menu

Species in the context of Biogeography

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants, Zoogeography is the branch that studies distribution of animals, while Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

Knowledge of spatial variation in the numbers and types of organisms is as vital to us today as it was to our early human ancestors, as we adapt to heterogeneous but geographically predictable environments. Biogeography is an integrative field of inquiry that unites concepts and information from ecology, evolutionary biology, taxonomy, geology, physical geography, palaeontology, and climatology.

↑ Return to Menu

Species in the context of Subspecies

In biological classification, subspecies (pl.: subspecies) is a rank below species, used for populations that live in different areas and vary in size, shape, or other physical characteristics (morphology), but that can successfully interbreed. Not all species have subspecies, but for those that do there must be at least two. Subspecies is abbreviated as subsp. or ssp. and the singular and plural forms are the same ("the subspecies is" or "the subspecies are").

In zoology, under the International Code of Zoological Nomenclature, the subspecies is the only taxonomic rank below that of species that can receive a name. In botany and mycology, under the International Code of Nomenclature for algae, fungi, and plants, other infraspecific ranks, such as variety, may be named. In bacteriology and virology, under standard bacterial nomenclature and virus nomenclature, there are recommendations but not strict requirements for recognizing other important infraspecific ranks.

↑ Return to Menu

Species in the context of Type species

In zoological nomenclature, a type species (species typica) is the species whose name is considered to be permanently taxonomically associated with the name of a genus or subgenus. In other words, it is the species that contains the biological type specimen or specimens of the genus or subgenus. A similar concept is used for groups ranked above the genus and called a type genus.

In botanical nomenclature, these terms have no formal standing under the code of nomenclature, but are sometimes borrowed from zoological nomenclature. In botany, the type of a genus name is a specimen (or, rarely, an illustration) which is also the type of a species name. The species name with that type can also be referred to as the type of the genus name. Names of genus and family ranks, the various subdivisions of those ranks, and some higher-rank names based on genus names, have such types.

↑ Return to Menu

Species in the context of Genus

Genus (/ˈnəs/; pl.: genera /ˈɛnərə/) is a taxonomic rank above species and below family as used in the biological classification of living and fossil organisms as well as viruses. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.

The composition of a genus is determined by taxonomists. The standards for genus classification are not strictly codified, so different authorities often produce different classifications for genera. There are some general practices used, however, including the idea that a newly defined genus should fulfill these three criteria to be descriptively useful:

↑ Return to Menu