Noble metals in the context of "Polonium"

Play Trivia Questions online!

or

Skip to study material about Noble metals in the context of "Polonium"

Ad spacer

⭐ Core Definition: Noble metals

A noble metal is a metallic chemical element that is resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper, and mercury are sometimes included as noble metals, but each of these usually occurs in nature combined with sulfur.

In more specialized fields of study and applications, the number of elements counted as noble metals can vary. In some contexts, the term is used only for copper, silver, and gold which have filled d-bands. In others, it is applied more broadly to any metallic or semimetallic element that does not react with a weak acid and give off hydrogen gas in the process. This broader set includes copper, mercury, technetium, rhenium, arsenic, antimony, bismuth, polonium, gold, the six platinum group metals, and silver.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Noble metals in the context of Precious metal

Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less chemically reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but they are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best known precious metals are the precious coinage metals, which are gold and silver. Although both have industrial uses, they are better known for their uses in art, jewelry, and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.The demand for precious metals is driven not only by their practical use but also by their role as investments and a store of value. Historically, precious metals have commanded much higher prices than common industrial metals.

↑ Return to Menu

Noble metals in the context of Non-ferrous extractive metallurgy

Non-ferrous extractive metallurgy is one of the two branches of extractive metallurgy which pertains to the processes of reducing valuable, non-iron metals from ores or raw material. Metals like zinc, copper, lead, aluminium as well as rare and noble metals are of particular interest in this field, while the more common metal, iron, is considered a major impurity. Like ferrous extraction, non-ferrous extraction primarily focuses on the economic optimization of extraction processes in separating qualitatively and quantitatively marketable metals from its impurities (gangue).

Any extraction process will include a sequence of steps or unit processes for separating highly pure metals from undesirables in an economically efficient system. Unit processes are usually broken down into three categories: pyrometallurgy, hydrometallurgy, and electrometallurgy. In pyrometallurgy, the metal ore is first oxidized through roasting or smelting. The target metal is further refined at high temperatures and reduced to its pure form. In hydrometallurgy, the object metal is first dissociated from other materials using a chemical reaction, which is then extracted in pure form using electrolysis or precipitation. Finally, electrometallurgy generally involves electrolytic or electrothermal processing. The metal ore is either distilled in an electrolyte or acid solution, then magnetically deposited onto a cathode plate (electrowinning); or smelted then melted using an electric arc or plasma arc furnace (electrothermic reactor).

↑ Return to Menu