Megabat in the context of "Ebola"

Play Trivia Questions online!

or

Skip to study material about Megabat in the context of "Ebola"

Ad spacer

⭐ Core Definition: Megabat

Megabats constitute the family Pteropodidae of the order Chiroptera. They are also called fruit bats, Old World fruit bats, or—especially the genera Acerodon and Pteropusflying foxes. They are the only member of the superfamily Pteropodoidea, which is one of two superfamilies in the suborder Yinpterochiroptera. Internal divisions of Pteropodidae have varied since subfamilies were first proposed in 1917. From three subfamilies in the 1917 classification, six are now recognized, along with various tribes. As of 2018, 197 species of megabat had been described.

The leading theory of the evolution of megabats has been determined primarily by genetic data, as the fossil record for this family is the most fragmented of all bats. They likely evolved in Australasia, with the common ancestor of all living pteropodids existing approximately 31 million years ago. Many of their lineages probably originated in Melanesia, then dispersed over time to mainland Asia, the Mediterranean, and Africa. Today, they are found in tropical and subtropical areas of Eurasia, Africa, and Oceania.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Megabat in the context of Ebola

Ebola, also known as Ebola virus disease (EVD) and Ebola hemorrhagic fever (EHF), is a viral hemorrhagic fever in humans and other primates, caused by ebolaviruses. Symptoms typically start anywhere between two days and three weeks after infection. The first symptoms are usually fever, sore throat, muscle pain, and headaches. These are usually followed by vomiting, diarrhoea, rash and decreased liver and kidney function, at which point some people begin to bleed both internally and externally. Ebola has a mortality rate of 25–90% depending on treatment, and averages a mortality rate of approximately 50%. Death is often due to shock from fluid loss, and typically occurs between 6 and 16 days after the first symptoms appear. Early treatment of symptoms increases the survival rate considerably compared to late start. An Ebola vaccine was approved by the US FDA in December 2019.

The virus spreads through direct contact with body fluids, such as blood from infected humans or other animals, or from contact with items that have recently been contaminated with infected body fluids. There have been no documented cases, either in nature or under laboratory conditions, of spread through the air between humans or other primates. After recovering from Ebola, semen or breast milk may continue to carry the virus for anywhere between several weeks to several months. Fruit bats are believed to be the natural host of the virus; they are able to spread the virus without being affected by it. The symptoms of Ebola may resemble those of several other diseases, including malaria, cholera, typhoid fever, meningitis and other viral hemorrhagic fevers. Diagnosis is confirmed by testing blood samples for the presence of viral RNA, viral antibodies or the virus itself.

↓ Explore More Topics
In this Dossier

Megabat in the context of Bat

Bats (order Chiroptera /kˈrɒptərə/) are winged mammals; the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their long spread-out digits covered with a thin membrane or patagium. The smallest bat, and one of the smallest extant mammals, is Kitti's hog-nosed bat, which is 29–33 mm (1.1–1.3 in) in length, 150 mm (5.9 in) across the forearm and 2 g (0.071 oz) in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox (Acerodon jubatus) reaching a weight of 1.5 kg (3.3 lb) and having a wingspan of 1.6 m (5 ft 3 in).

The second largest order of mammals after rodents, bats comprise about 20% of all classified mammal species worldwide, with at least 1,500 known species. These were traditionally divided into two suborders: the largely fruit-eating megabats, and the echolocating microbats. But more recent evidence has supported dividing the order into Yinpterochiroptera and Yangochiroptera, with megabats as members of the former along with several species of microbats. Many bats are insectivores, and most of the rest are frugivores (fruit-eaters) or nectarivores (nectar-eaters). A few species feed on animals other than insects; for example, the vampire bats are haematophagous (feeding on blood). Most bats are nocturnal, and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape predators. Bats are distributed globally in all except the coldest regions. They are important in their ecosystems for pollinating flowers and dispersing seeds as well as controlling insect populations.

↑ Return to Menu

Megabat in the context of Ebola virus

Orthoebolavirus zairense or Zaire ebolavirus, more commonly known as Ebola virus (/iˈblə, ɪ-/; EBOV), is one of six known species within the genus Ebolavirus. Four of the six known ebolaviruses, including EBOV, cause a severe and often fatal hemorrhagic fever in humans and other mammals, known as Ebola virus disease (EVD). Ebola virus has caused the majority of human deaths from EVD, and was the cause of the 2013–2016 epidemic in western Africa, which resulted in at least 28,646 suspected cases and 11,323 confirmed deaths.

Ebola virus and its genus were both originally named for Zaire (now the Democratic Republic of the Congo), the country where it was first described, and was at first suspected to be a new "strain" of the closely related Marburg virus. The virus was renamed "Ebola virus" in 2010 to avoid confusion. Ebola virus is the single member of the species Zaire ebolavirus, which is assigned to the genus Ebolavirus, family Filoviridae, order Mononegavirales. The members of the species are called Zaire ebolaviruses. The natural reservoir of Ebola virus is believed to be bats, particularly fruit bats, and it is primarily transmitted between humans and from animals to humans through body fluids.

↑ Return to Menu

Megabat in the context of Giant golden-crowned flying fox

The giant golden-crowned flying fox (Acerodon jubatus), also known as the golden-capped fruit bat, is a species of megabat endemic to the Philippines. Since its description in 1831, three subspecies of the giant golden-crowned flying fox have been recognized, one of which is extinct. The extinct subspecies (A. jubatus lucifer) was formerly recognized as a full species, the Panay golden-crowned flying fox. Formerly, this species was placed in the genus Pteropus; while it is no longer within the genus, it has many physical similarities to Pteropus megabats. It is one of the largest bat species in the world, weighing up to 1.4 kg (3.1 lb)—only the Indian and great flying fox can weigh more. It has the longest documented forearm length of any bat species at 21 cm (8.3 in).

It is primarily frugivorous, consuming several kinds of fig and some leaves. It forages at night and sleeps during the day in tree roosts. These roosts can consist of thousands of individuals, often including another species, the large flying fox. Not much is known about its reproduction; it gives birth annually from April through June, with females having one pup at a time. Predators of the giant golden-crowned flying fox include raptors such as eagles, the reticulated python, and humans.

↑ Return to Menu

Megabat in the context of Yinpterochiroptera

The Yinpterochiroptera (or Pteropodiformes) is a suborder of the Chiroptera, which includes taxa formerly known as megabats and five of the microbat families: Rhinopomatidae, Rhinolophidae, Hipposideridae, Craseonycteridae, and Megadermatidae. This suborder is primarily based on molecular genetics data. This proposal challenged the traditional view that megabats and microbats form monophyletic groups of bats. Further studies are being conducted, using both molecular and morphological cladistic methodology, to assess its merit.

The term Yinpterochiroptera is constructed from the words Pteropodidae (the family of megabats) and Yinochiroptera (a term proposed in 1984 by Karl F. Koopman to refer to certain families of microbats).Recent studies using transcriptome data have found strong support for the Yinpterochiroptera-Yangochiroptera classification system.Researchers have created a relaxed molecular clock that estimates the divergence between Yinpterochiroptera and Yangochiroptera around 63 million years ago. The most recent common ancestor of Yinpterochiroptera, corresponding to the split between Rhinolophoidea and Pteropodidae (Old World Fruit bats), is estimated to have occurred 60 million years ago.

↑ Return to Menu

Megabat in the context of Chiroptera

Bats (order Chiroptera /kˈrɒptərə/) are winged mammals; the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their long spread-out digits covered with a thin membrane or patagium. The smallest bat, and one of the smallest extant mammals, is Kitti's hog-nosed bat, which is 29–33 mm (1.1–1.3 in) in length, 150 mm (5.9 in) across the forearm and 2 g (0.071 oz) in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox (Acerodon jubatus) reaching a weight of 1.5 kg (3.3 lb) and having a wingspan of 1.6 m (5 ft 3 in).

The second largest order of mammals after rodents, bats comprise about 20% of all classified mammal species worldwide, with at least 1,500 known species. These were traditionally divided into two suborders: the largely fruit-eating megabats and the echolocating microbats. But more recent evidence has supported dividing the order into Yinpterochiroptera and Yangochiroptera, with megabats as members of the former along with several species of microbats. Many bats are insectivores, and most of the rest are frugivores (fruit-eaters) or nectarivores (nectar-eaters). A few species feed on animals other than insects; for example, the vampire bats are haematophagous (feeding on blood). Most bats are nocturnal, and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape predators. Bats are distributed globally in all except the coldest regions. They are important in their ecosystems for pollinating flowers and dispersing seeds as well as controlling insect populations.

↑ Return to Menu