Jet Propulsion Laboratory in the context of Deep Space Network


Jet Propulsion Laboratory in the context of Deep Space Network

Jet Propulsion Laboratory Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Jet Propulsion Laboratory in the context of "Deep Space Network"


⭐ Core Definition: Jet Propulsion Laboratory

The Jet Propulsion Laboratory (JPL) is a federally funded research and development center in La Cañada Flintridge, California, Crescenta Valley, United States. Founded in 1936 by California Institute of Technology (Caltech) researchers, the laboratory is now owned and sponsored by NASA and administered and managed by Caltech.

The primary function of the laboratory is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating the NASA Deep Space Network (DSN).

↓ Menu
HINT:

In this Dossier

Jet Propulsion Laboratory in the context of Voyager 1

Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program, to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin, Voyager 2. It communicates through the NASA Deep Space Network (DSN) to receive routine commands and to transmit data to Earth. Real-time distance and velocity data are provided by NASA and JPL. At a distance of 170.02 AU (25.4 billion km; 15.8 billion mi) as of November 2025, it is the most distant human-made object from Earth. Voyager 1 is also projected to reach a distance of one light day from Earth in November of 2026.

The probe made flybys of Jupiter, Saturn, and Saturn's largest moon, Titan. NASA had a choice of either conducting a Pluto or Titan flyby. Exploration of Titan took priority because it was known to have a substantial atmosphere. Voyager 1 studied the weather, magnetic fields, and rings of the two gas giants and was the first probe to provide detailed images of their moons.

View the full Wikipedia page for Voyager 1
↑ Return to Menu

Jet Propulsion Laboratory in the context of Project Vanguard

Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket as the launch vehicle from Cape Canaveral Missile Annex, Florida.

In response to the launch of Sputnik 1 on 4 October 1957, the U.S. restarted the Explorer program, which had been proposed earlier by the Army Ballistic Missile Agency (ABMA). Privately, however, the Central Intelligence Agency (CIA) and President Dwight D. Eisenhower were aware of progress being made by the Soviets on Sputnik from secret spy plane imagery. Together with the Jet Propulsion Laboratory (JPL), ABMA built Explorer 1 and launched it on 1 February 1958 (UTC). Before work was completed, however, the Soviet Union launched a second satellite, Sputnik 2, on 3 November 1957. Meanwhile, the spectacular failure of Vanguard TV3 on 6 December 1957, deepened American dismay over the country's position in the Space Race.

View the full Wikipedia page for Project Vanguard
↑ Return to Menu

Jet Propulsion Laboratory in the context of NASA Deep Space Network

The NASA Deep Space Network (DSN) is a worldwide network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA's interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the Solar System and the universe, and supports selected Earth-orbiting missions. DSN is part of the NASA Jet Propulsion Laboratory (JPL).

View the full Wikipedia page for NASA Deep Space Network
↑ Return to Menu

Jet Propulsion Laboratory in the context of Perseverance (rover)

Perseverance is a NASA rover that has been exploring Mars since February 18, 2021, as part of the Mars 2020 mission. Built and managed by the Jet Propulsion Laboratory, it was launched on July 30, 2020, from Cape Canaveral aboard an Atlas V rocket and landed in Jezero Crater, a site chosen for its ancient river delta that may preserve evidence of past microbial life.

The rover's main goals are to search for signs of ancient life, study the planet's geology and climate, and collect rock and regolith samples for possible return to Earth by a future mission. Perseverance also tests technologies intended to support later human exploration, including an experiment that successfully produced oxygen from the thin carbon-dioxide atmosphere.

View the full Wikipedia page for Perseverance (rover)
↑ Return to Menu

Jet Propulsion Laboratory in the context of Centaur (minor planet)

In planetary astronomy, a centaur is a small Solar System body that orbits the Sun between Jupiter and Neptune and crosses the orbits of one or more of the giant planets. Centaurs generally have unstable orbits because of this; almost all their orbits have dynamic lifetimes of only a few million years, but there is one known centaur, 514107 Kaʻepaokaʻāwela, which may be in a stable (though retrograde) orbit. Centaurs typically exhibit the characteristics of both asteroids and comets. They are named after the mythological centaurs that were a mixture of horse and human. Observational bias toward large objects makes determination of the total centaur population difficult. Estimates for the number of centaurs in the Solar System more than 1 km in diameter range from as low as 44,000 to more than 10,000,000.

The first centaur to be discovered, under the definition of the Jet Propulsion Laboratory and the one used here, was 944 Hidalgo in 1920. However, they were not recognized as a distinct population until the discovery of 2060 Chiron in 1977. The largest confirmed centaur is 10199 Chariklo, which at 250 kilometers in diameter is as big as a mid-sized main-belt asteroid, and is known to have a system of rings. It was discovered in 1997.

View the full Wikipedia page for Centaur (minor planet)
↑ Return to Menu

Jet Propulsion Laboratory in the context of Wide Field and Planetary Camera 2

The Wide Field and Planetary Camera 2 (WFPC2) is a camera formerly installed on the Hubble Space Telescope. The camera was built by the Jet Propulsion Laboratory and is roughly the size of a baby grand piano. It was installed by servicing mission 1 (STS-61) in 1993, replacing the telescope's original Wide Field and Planetary Camera (WF/PC). WFPC2 was used to image the Hubble Deep Field in 1995, the Engraved Hourglass Nebula and Egg Nebula in 1996, and the Hubble Deep Field South in 1998. During STS-125, WFPC2 was removed and replaced with the Wide Field Camera 3 as part of the mission's first spacewalk on May 14, 2009. After returning to Earth, the camera was displayed briefly at the National Air and Space Museum and the Jet Propulsion Laboratory before returning to its final home at the Smithsonian's National Air and Space Museum.

View the full Wikipedia page for Wide Field and Planetary Camera 2
↑ Return to Menu

Jet Propulsion Laboratory in the context of Palomar Observatory

The Palomar Observatory is an astronomical research observatory in the Palomar Mountains of San Diego County, California, United States. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Astronomical Observatories of China.

The observatory operates several telescopes, including the 200-inch (5.1 m) Hale Telescope, the 48-inch (1.2 m) Samuel Oschin telescope (dedicated to the Zwicky Transient Facility, ZTF), the Palomar 60-inch (1.5 m) Telescope, and the 30-centimetre (12-inch) Gattini-IR telescope. Decommissioned instruments include the Palomar Testbed Interferometer and the first telescopes at the observatory, an 18-inch (46 cm) Schmidt camera from 1936.

View the full Wikipedia page for Palomar Observatory
↑ Return to Menu

Jet Propulsion Laboratory in the context of Gravity Recovery and Climate Experiment

The Gravity Recovery and Climate Experiment (GRACE) was a joint mission of NASA and the German Aerospace Center (DLR). Twin satellites took detailed measurements of Earth's gravity field anomalies from its launch in March 2002 to the end of its science mission in October 2017. The two satellites were sometimes called Tom and Jerry, a nod to the famous cartoon. The GRACE Follow-On (GRACE-FO) is a continuation of the mission on near-identical hardware, launched in May 2018. On March 19, 2024, NASA announced that the successor to GRACE-FO would be Gravity Recovery and Climate Experiment-Continuity (GRACE-C), to be launched in December 2028.

By measuring gravity anomalies, GRACE showed how mass is distributed around the planet and how it varies over time. Data from the GRACE satellites is an important tool for studying Earth's ocean, geology, and climate. GRACE was a collaborative endeavor involving the Center for Space Research at the University of Texas at Austin, NASA's Jet Propulsion Laboratory, the German Aerospace Center and Germany's National Research Center for Geosciences, Potsdam. The Jet Propulsion Laboratory was responsible for the overall mission management under the NASA ESSP (Earth System Science Pathfinder) program.

View the full Wikipedia page for Gravity Recovery and Climate Experiment
↑ Return to Menu

Jet Propulsion Laboratory in the context of JPL Small-Body Database

The JPL Small-Body Database (SBDB) is an astronomy database about small Solar System bodies. It is maintained by Jet Propulsion Laboratory (JPL) and NASA and provides data for all known asteroids and several comets, including orbital parameters and diagrams, physical diagrams, close approach details, radar astrometry, discovery circumstances, alternate designations and lists of publications related to the small body. The database is updated daily when new observations are available. In April 2021 the JPL Small-Body Database started using planetary ephemeris (DE441) and small-body perturber SB441-N16. Most objects such as asteroids get a two-body solution (Sun+object) recomputed twice a year. Comets generally have their two-body orbits computed at a time near the perihelion passage (closest approach to the Sun) as to have the two-body orbit more reasonably accurate for both before and after perihelion. For most asteroids, the epoch used to define an orbit is updated twice a year. Orbital uncertainties in the JPL Small-Body Database are listed at the 1-sigma level.

On 27 September 2021 the JPL Solar System Dynamics website underwent a significant upgrade.

View the full Wikipedia page for JPL Small-Body Database
↑ Return to Menu

Jet Propulsion Laboratory in the context of Mars rover

A Mars rover is a remote-controlled motor vehicle designed to travel on the surface of Mars. Rovers have several advantages over stationary landers: they examine more territory, they can be directed to interesting features, they can place themselves in sunny positions to weather winter months, and they can advance the knowledge of how to perform very remote robotic vehicle control. They serve a different purpose than orbital spacecraft like Mars Reconnaissance Orbiter. A more recent development is the Mars helicopter.

As of May 2021, there have been six successful robotically operated Mars rovers; the first five, managed by the American NASA Jet Propulsion Laboratory, were (by date of Mars landing): Sojourner (1997), Spirit (2004–2010), Opportunity (2004–2018), Curiosity (2012–present), and Perseverance (2021–present). The sixth, managed by the China National Space Administration, is Zhurong (2021–2022).

View the full Wikipedia page for Mars rover
↑ Return to Menu

Jet Propulsion Laboratory in the context of Juno (spacecraft)

Juno is a NASA space probe orbiting the planet Jupiter. Built by Lockheed Martin and operated by NASA's Jet Propulsion Laboratory, the spacecraft was launched from Cape Canaveral Air Force Station on August 5, 2011 UTC, as part of the New Frontiers program. Juno entered a polar orbit of Jupiter on July 5, 2016, UTC, to begin a scientific investigation of the planet. After completing its mission, Juno was originally planned to be intentionally deorbited into Jupiter's atmosphere, but has since been approved to continue orbiting until contact is lost with the spacecraft, but it is scheduled to be shut down per the FY2026 budget proposed by the second Donald Trump administration. However, if Juno mission receives a third mission extension, it will continue to explore Jupiter for another three years to study Jovian rings and inner moons area which is not well explored; this phase will also include close flybys of the moons Thebe, Amalthea, Adrastea, and Metis.

Juno's mission is to measure Jupiter's composition, gravitational field, magnetic field, and polar magnetosphere. It also searches for clues about how the planet formed, including whether it has a rocky core, the amount of water present within the deep atmosphere, mass distribution, and its deep winds, which can reach speeds up to 620 km/h (390 mph).

View the full Wikipedia page for Juno (spacecraft)
↑ Return to Menu

Jet Propulsion Laboratory in the context of Electrically powered spacecraft propulsion

Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

Electric thrusters typically use much less propellant than chemical rockets because they have a higher exhaust speed (operate at a higher specific impulse) than chemical rockets. Due to limited electric power the thrust is much lower compared to chemical rockets, but electric propulsion can provide thrust for a longer time. Nuclear-electric or plasma engines, operating for long periods at low thrust and powered by fission reactors, have the potential to reach speeds much greater than chemically powered vehicles or nuclear-thermal rockets. But because of their low-thrust propulsion, electric propulsion is not suitable for launches from the Earth's surface and they would be limited to off-planet, deep-space operation. Such vehicles probably have the potential to power solar system exploration with reasonable trip times within the current century: in the future the most advanced electric thrusters may be able to impart a delta-v of 100 km/s (62 mi/s), which is enough to take a spacecraft to the outer planets of the Solar System (with nuclear power), but too slow for interstellar travel. An electric rocket with an external power source (transmissible through laser on the photovoltaic panels) has a theoretical possibility for interstellar flight.

View the full Wikipedia page for Electrically powered spacecraft propulsion
↑ Return to Menu

Jet Propulsion Laboratory in the context of Sentry Risk Table

Sentry is an automated impact prediction system started in 2002 and operated by the Center for Near Earth Object Studies (CNEOS) at NASA's Jet Propulsion Laboratory. It continually monitors the most up-to-date asteroid catalog for possibilities of future impact with Earth over the next 100+ years. Whenever a potential impact is detected, it will be analyzed and the results immediately published by CNEOS. However, alerts do not imply certainty about future impacts, as the small amounts of optical data that can trigger an alert are not enough to conclusively identify an impact years in the future. In contrast, eliminating an entry on the risk page is a negative prediction (a prediction of where it will not be).

Scientists warn against worrying about the possibility of impact with an object based on only a few weeks of optical data that show a possible Earth encounter years from now. Sometimes, it cannot even be said for certain what side of the Sun such an object will be at the time of the listed virtual impactor date. For example, even though 2005 ED224 had a 1-in-500,000 chance of impacting Earth on 11 March 2023, its most likely position at that date was farther away than the Sun. Most objects in the Sentry Risk Table have an observation arc of less than 14 days, making their positions highly uncertain, and have not been observed for years.

View the full Wikipedia page for Sentry Risk Table
↑ Return to Menu

Jet Propulsion Laboratory in the context of California Institute of Technology

The California Institute of Technology (branded as Caltech) is a private research university/institute of technology in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small group of institutes of technology in the United States that are devoted to the instruction of pure and applied sciences.

The institution was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910, and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of NASA's Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

View the full Wikipedia page for California Institute of Technology
↑ Return to Menu

Jet Propulsion Laboratory in the context of Spaceborne Imaging Radar

The Spaceborne Imaging Radar (SIR) – full name 'Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR)', is a synthetic aperture radar which flew on two separate shuttle missions. Once from the Space Shuttle Endeavour in April 1994 on (STS-59) and again in October 1994 on (STS-68). The radar was run by NASA's Space Radar Laboratory. SIR utilizes 3 radar frequencies: L band (24 cm wavelength), C band (6 cm) and X band (3 cm), allowing for study of geology, hydrology, ecology and oceanography. Comparing radar images to data collected by teams of people on the ground as well as aircraft and ships using simultaneous measurements of vegetation, soil moisture, sea state, snow and weather conditions during each flight. The imaging radar was able to take images anytime regardless of clouds cover. The Radar-C system was built and operated by NASA's Jet Propulsion Laboratory (JPL). The mission was a joint work of NASA with the German and Italian space agencies. Each of the week long mission scanned about 50 million square kilometers of the Earth's surface, (19.3 million square miles).

The SIR mission revealed hidden river channels in the Sahara Desert indicating significant climate change in the past. SIR was also used for volcano research by keeping researchers a safe distance from hazardous and often inaccessible areas. The radar was also used to generate detailed three dimensional mappings of the Earth's surface.

View the full Wikipedia page for Spaceborne Imaging Radar
↑ Return to Menu

Jet Propulsion Laboratory in the context of Ephemeris time

In metrology, ephemeris time (ET) is time in association with any ephemeris (itinerary of the trajectory of an astronomical object). In practice it has been used more specifically to refer to:

  1. a former standard astronomical time scale adopted in 1952 by the IAU, and superseded during the 1970s. This time scale was proposed in 1948, to overcome the disadvantages of irregularly fluctuating mean solar time. The intent was to define a uniform time (as far as was then feasible) based on Newtonian theory (see below: Definition of ephemeris time (1952)). Ephemeris time was a first application of the concept of a dynamical time scale, in which the time and time scale are defined implicitly, inferred from the observed position of an astronomical object via the dynamical theory of its motion.
  2. a modern relativistic coordinate time scale, implemented by the JPL ephemeris time argument Teph, in a series of numerically integrated Development Ephemerides. Among them is the DE405 ephemeris in widespread current use. The time scale represented by Teph is closely related to, but distinct (by an offset and constant rate) from, the TCB time scale currently adopted as a standard by the IAU (see below: JPL ephemeris time argument Teph).

Most of the following sections relate to the ephemeris time of the 1952 standard.

View the full Wikipedia page for Ephemeris time
↑ Return to Menu