The term observatoire has been used in French since at least 1976 to denote any institution that compiles and presents data on a particular subject (such as public health observatory) or for a particular geographic area (European Audiovisual Observatory).
Tycho Brahe (/ˈtaɪkoʊˈbrɑː(h)i,-ˈbrɑː(hə)/TY-koh BRAH-(h)ee, - BRAH(-hə); Danish:[ˈtsʰykʰoˈpʁɑːə]; born Tyge Ottesen Brahe, Danish:[ˈtsʰyːjəˈʌtəsn̩ˈpʁɑːə]; 14 December 1546 – 24 October 1601), generally called Tycho for short, was a Danish astronomer of the Renaissance, known for his comprehensive and unprecedentedly accurate astronomical observations. He was known during his lifetime as an astronomer, astrologer, and alchemist. He was the last major astronomer before the invention of the telescope and has been described as the greatest pre-telescopic astronomer.
In 1572, Tycho noticed a completely new star that was brighter than any star or planet. Astonished by the existence of a star that ought not to have been there, he devoted himself to the creation of ever more accurate instruments of measurement over the next fifteen years (1576–1591). King Frederick II granted Tycho an estate on the island of Hven and the money to build Uraniborg, the first large observatory in Christian Europe. He later worked underground at Stjerneborg, where he realised that his instruments in Uraniborg were not sufficiently steady. His unprecedented research program both turned astronomy into the first modern science and also helped launch the Scientific Revolution.
Kitt Peak National Observatory was founded in 1958. It is home to what was the largest solar telescope in the world, and many large astronomical telescopes of the late 20th century in the United States.
The strength of seeing is often characterized by the angular diameter of the long-exposure image of a star (seeing disk) or by the Fried parameterr0. The diameter of the seeing disk is the full width at half maximum of its optical intensity. An exposure time of several tens of milliseconds can be considered long in this context. The Fried parameter describes the size of an imaginary telescope aperture for which the diffraction limited angular resolution is equal to the resolution limited by seeing. Both the size of the seeing disc and the Fried parameter depend on the optical wavelength, but it is common to specify them for 500 nanometers.A seeing disk smaller than 0.4 arcseconds or a Fried parameter larger than 30 centimeters can be considered excellent seeing. The best conditions are typically found at high-altitude observatories on small islands, such as those at Mauna Kea or La Palma.
Since astronomical radio sources such as planets, stars, nebulas and galaxies are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio telescopes are typically large parabolic ("dish") antennas similar to those employed in tracking and communicating with satellites and space probes. They may be used individually or linked together electronically in an array. Radio observatories are preferentially located far from major centers of population to avoid electromagnetic interference (EMI) from radio, television, radar, motor vehicles, and other man-made electronic devices.
Uraniborg was an astronomical observatory and alchemy laboratory established and operated by the Danish astronomer Tycho Brahe. It was the first custom-built observatory in modern Europe, and the last to be built without a telescope as its primary instrument.
Uraniborg was built c. 1576 – c. 1580 on Ven, an island in the Øresund between Zealand and Scania, Sweden, which was part of Denmark at the time. It was expanded with the underground facility Stjerneborg (Swedish: Stjärneborg) on an adjacent site.
Stjerneborg ("Star Castle" in English) was Tycho Brahe's underground observatory next to his palace-observatory Uraniborg, located on the island of Ven in the Öresund between Denmark and Sweden.
Tycho Brahe built it circa 1581. He wrote: "My purpose was partly to have placed some of the most important instruments securely and firmly in order that they should not be exposed to the disturbing influence of the wind, and should be easier to use, partly to separate my collaborators when there were several with me at the same time, and have some of them make observations in the castle itself, others in these cellars, in order that they should not get in the way of each other or compare their observations before I wanted this." He named it Stiernburg in vernacular or Stellæburgus in Latin. Both the Danish and Latin names mean "castle of the stars".