Internal combustion engine in the context of Engine downsizing


Internal combustion engine in the context of Engine downsizing

Internal combustion engine Study page number 1 of 9

Play TriviaQuestions Online!

or

Skip to study material about Internal combustion engine in the context of "Engine downsizing"


HINT:

In this Dossier

Internal combustion engine in the context of Waste heat

Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.

Instead of being "wasted" by release into the ambient environment, sometimes waste heat (or cold) can be used by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building).

View the full Wikipedia page for Waste heat
↑ Return to Menu

Internal combustion engine in the context of Motor oil

Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge (one of the functions of dispersants) and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves the sealing of piston rings, and cools the engine by carrying heat away from moving parts.

In addition to the aforementioned basic constituents, almost all lubricating oils contain corrosion and oxidation inhibitors. Motor oil may be composed of only a lubricant base stock in the case of non-detergent oil, or a lubricant base stock plus additives to improve the oil's detergency, extreme pressure performance, and ability to inhibit corrosion of engine parts.

View the full Wikipedia page for Motor oil
↑ Return to Menu

Internal combustion engine in the context of Nicéphore Niépce

Joseph Nicéphore Niépce (French: [nisefɔʁ njɛps]; 7 March 1765 – 5 July 1833) was a French inventor and one of the pioneers of photography. Niépce developed heliography, a technique he used to create the world's oldest surviving products of a photographic process. In the mid-1820s, he used a primitive camera to produce the oldest surviving photograph of a real-world scene. Among Niépce's other inventions was the Pyréolophore, one of the world's first internal combustion engines, which he conceived, created, and developed with his older brother Claude Niépce.

View the full Wikipedia page for Nicéphore Niépce
↑ Return to Menu

Internal combustion engine in the context of Gasoline

Gasoline (North American English) or petrol (Commonwealth English) is a petrochemical product characterized as a transparent, yellowish and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When formulated as a fuel for engines, gasoline is chemically composed of organic compounds derived from the fractional distillation of petroleum and later chemically enhanced with gasoline additives. It is a high-volume profitable product produced in crude oil refineries.

The ability of a particular gasoline blend to resist premature ignition (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Tetraethyl lead was once widely used to increase the octane rating but is not used in modern automotive gasoline due to the health hazard. Aviation, off-road motor vehicles, and racing car engines still use leaded gasolines. Other substances are frequently added to gasoline to improve chemical stability and performance characteristics, control corrosion, and provide fuel system cleaning. Gasoline may contain oxygen-containing chemicals such as ethanol, MTBE, or ETBE to improve combustion.

View the full Wikipedia page for Gasoline
↑ Return to Menu

Internal combustion engine in the context of Marine propulsion

Marine propulsion is the mechanism or system used to generate thrust to move a watercraft through water. While paddles and sails are still used on some smaller boats, most modern ships are propelled by mechanical systems consisting of an electric motor or internal combustion engine driving a propeller, or less frequently, in pump-jets, an impeller. Marine engineering is the discipline concerned with the engineering design process of marine propulsion systems.

Human-powered paddles and oars, and later, sails were the first forms of marine propulsion. Rowed galleys, some equipped with sail, played an important early role in early human seafaring and warfare. The first advanced mechanical means of marine propulsion was the marine steam engine, introduced in the early 19th century. During the 20th century it was replaced by two-stroke or four-stroke diesel engines, outboard motors, and gas turbine engines on faster ships. Marine nuclear reactors, which appeared in the 1950s, produce steam to propel warships and icebreakers; commercial application, attempted late that decade, failed to catch on. Electric motors using battery packs have been used for propulsion on submarines and electric boats and have been proposed for energy-efficient propulsion.

View the full Wikipedia page for Marine propulsion
↑ Return to Menu

Internal combustion engine in the context of Thermodynamic efficiency

In thermodynamics, the thermal efficiency () is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.

For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is fractional as the output is always less than the input while the COP of a heat pump is more than 1. These values are further restricted by the Carnot theorem.

View the full Wikipedia page for Thermodynamic efficiency
↑ Return to Menu

Internal combustion engine in the context of Electric generator

In electricity generation, a generator, also called an electric generator, electrical generator, and electromagnetic generator is an electromechanical device that converts mechanical energy to electrical energy for use in an external circuit. In most generators which are rotating machines, a source of kinetic power rotates the generator's shaft, and the generator produces an electric current at its output terminals which flows through an external circuit, powering electrical loads. Sources of mechanical energy used to drive generators include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. Generators produce nearly all of the electric power for worldwide electric power grids. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday.

The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators are very similar. Some motors can be used in a "backward" sense as generators, if their shaft is rotated they will generate electric power.

View the full Wikipedia page for Electric generator
↑ Return to Menu

Internal combustion engine in the context of Thermal power station

A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle, Rankine cycle, Brayton cycle, etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines (internal combustion), skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.

The majority of the world's thermal power stations are driven by steam turbines, gas turbines, or a combination of the two. The efficiency of a thermal power station is determined by how effectively it converts heat energy into electrical energy, specifically the ratio of saleable electricity to the heating value of the fuel used. Different thermodynamic cycles have varying efficiencies, with the Rankine cycle generally being more efficient than the Otto or Diesel cycles. In the Rankine cycle, the low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate even more high pressure steam.

View the full Wikipedia page for Thermal power station
↑ Return to Menu

Internal combustion engine in the context of Electric vehicle

An electric vehicle (EV) is any motorized vehicle whose propulsion is provided fully or mostly by electric power, via grid electricity or from onboard rechargeable batteries. EVs encompass a wide range of transportation modes, including road (electric cars, buses, trucks and personal transporters) and rail vehicles (electric trains, trams and monorails), electric boats and submersibles, electric aircraft (both fixed-wing and multirotors) and electric spacecraft.

Early electric vehicles first came into existence in the late 19th century, when the Second Industrial Revolution brought forth electrification and mass utilization of DC and AC electric motors. Using electricity was among the preferred methods for early motor vehicle propulsion as it provided a level of quietness, comfort and ease of operation that could not be achieved by the gasoline engine cars of the time, but range anxiety due to the limited energy storage offered by contemporary battery technologies hindered any mass adoption of electric vehicles as private transportation throughout the 20th century. Internal combustion engines (both gasoline and diesel engines) were the dominant propulsion mechanisms for cars and trucks for about 100 years, but electricity-powered locomotion remained commonplace in other vehicle types, such as overhead line-powered mass transit vehicles like electric multiple units, streetcars, monorails and trolley buses, as well as various small, low-speed, short-range battery-powered personal vehicles such as mobility scooters.

View the full Wikipedia page for Electric vehicle
↑ Return to Menu

Internal combustion engine in the context of Diesel locomotive

A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel–electric locomotives and diesel–hydraulic.

Early internal combustion locomotives and railcars used kerosene and gasoline as their fuel. Rudolf Diesel patented his first compression-ignition engine in 1898, and steady improvements to the design of diesel engines reduced their physical size and improved their power-to-weight ratios to a point where one could be mounted in a locomotive. Internal combustion engines only operate efficiently within a limited power band, and while low-power gasoline engines could be coupled to mechanical transmissions, the more powerful diesel engines required the development of new forms of transmission. This is because clutches would need to be very large at these power levels and would not fit in a standard 2.5 m (8 ft 2 in)-wide locomotive frame, or would wear too quickly to be useful.

View the full Wikipedia page for Diesel locomotive
↑ Return to Menu

Internal combustion engine in the context of Motor vehicle

A motor vehicle, also known as a motorized vehicle, automotive vehicle, automobile, or road vehicle, is a self-propelled land vehicle, commonly wheeled, that can operate on rails (such as trains or trams), does not fly (such as airplanes or helicopters), does not float on water (such as boats or ships), and is used for the transportation of people or cargo.

The vehicle propulsion is provided by an engine or motor, usually a gasoline/diesel internal combustion engine or an electric traction motor, or some combination of the two as in hybrid electric vehicles and plug-in hybrid vehicles. For legal purpose, motor vehicles are often identified within a number of vehicle classes including cars, buses, motorcycles, off-road vehicles, light trucks and regular trucks. These classifications vary according to the legal codes of each country. ISO 3833:1977 is the standard for road vehicle types, terms and definitions. Typically, to avoid requiring people with disabilities from having to possess an operator's license to use one, or requiring tags and insurance, powered wheelchairs will be specifically excluded by law from being considered motor vehicles.

View the full Wikipedia page for Motor vehicle
↑ Return to Menu

Internal combustion engine in the context of Motor fuel

A motor fuel is a fuel that is used to provide power to the engine (motor) of vehicles — typically a heat engine that produces thermal energy via oxidative combustion of liquid or gaseous fuel and then converts the heat into mechanical energy through reciprocating pistons or gas turbines.

Currently, the majority of motor vehicles, powerboats and light aircraft worldwide are propelled by internal combustion engines powered by petroleum-based hydrocarbon fossil fuels such as gasoline, diesel or autogas, while larger ships and aircraft use marine diesel oil and kerosene to power gas/steam turbine, turboprop and jet engines. Other fuel types include ethanol, biodiesel, biogasoline, propane, compressed natural gas (CNG) and hydrogen (either using fuel cells or hydrogen combustion). There are also cars that use a hybrid drivetrain of different power sources. The use of synthetic alternative fuels (especially renewable biofuels) is increasing, especially in Europe, as well as increasing mass adoption of battery electric vehicles (which are powered by battery-stored electricity instead of fuels).

View the full Wikipedia page for Motor fuel
↑ Return to Menu

Internal combustion engine in the context of Octane rating

An octane rating, or octane number, is a standard measure of a fuel's ability to withstand compression in an internal combustion engine without causing engine knocking. The higher the octane number, the more compression the fuel can withstand before detonating. Octane rating does not relate directly to the power output or the energy content of the fuel per unit mass or volume, but simply indicates the resistance to detonating under pressure without a spark.

Whether a higher octane fuel improves or impairs an engine's performance depends on the design of the engine. In broad terms, fuels with a higher octane rating are used in higher-compression gasoline engines, which may yield higher power for these engines. The added power in such cases comes from the way the engine is designed to compress the air/fuel mixture, and not directly from the rating of the gasoline.

View the full Wikipedia page for Octane rating
↑ Return to Menu

Internal combustion engine in the context of Diesel fuel

Diesel fuel, also called diesel oil, fuel oil (historically), or simply diesel, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place as a result of compression of the inlet air and then injection of fuel without a spark. Therefore, diesel fuel needs good compression ignition characteristics.

The most common type of diesel fuel is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is sometimes called petrodiesel in some academic circles. Diesel is a high-volume product of oil refineries.

View the full Wikipedia page for Diesel fuel
↑ Return to Menu

Internal combustion engine in the context of Autogas

Autogas is liquefied petroleum gas (LPG) used as a fuel in internal combustion engines of vehicles as well as in stationary applications such as generators. It is a mixture of propane and butane.

Autogas is widely used as a "green" fuel, as its use reduces CO2 exhaust emissions by around 15% compared to petrol. One litre of petrol produces 2.3 kg of CO2 when burnt, whereas the equivalent amount of autogas (1.33 litres due to the lower density of autogas) produces 2 kg of CO2 when burnt. CO emissions are 30% lower compared to petrol, and NOx is reduced by 50%. It has an octane rating (MON/RON) that is between 90 and 110 and an energy content (higher heating value—HHV) that is between 25.5 megajoules per litre (for pure propane) and 28.7 megajoules per litre (for pure butane) depending upon the actual fuel composition.

View the full Wikipedia page for Autogas
↑ Return to Menu

Internal combustion engine in the context of Compressed natural gas

Compressed natural gas (or simply shortened as CNG) is a fuel gas mainly composed of methane (CH4), compressed to less than 1% of the volume it occupies at standard atmospheric pressure. It is stored and distributed in hard containers at a pressure of 20–25 megapascals (2,900–3,600 psi; 200–250 bar), usually in cylindrical or spherical shapes.

CNG is used in traditional petrol/internal combustion engine vehicles that have been modified, or in vehicles specifically manufactured for CNG use: either alone (dedicated), with a segregated liquid fuel system to extend range (dual fuel), or in conjunction with another fuel (bi-fuel). It can be used in place of petrol, diesel fuel, and liquefied petroleum gas (LPG). CNG combustion produces fewer undesirable gases than the aforementioned fuels. In comparison to other fuels, natural gas poses less of a threat in the event of a spill, because it is lighter than air and disperses quickly when released. Biomethane, biogas from anaerobic digestion or landfill, can be used.

View the full Wikipedia page for Compressed natural gas
↑ Return to Menu

Internal combustion engine in the context of Hydrogen compressed natural gas

HCNG or H2CNG (hydrogen compressed natural gas) is a mixture of compressed natural gas and 4–9 percent hydrogen by energy. It may be used as a fuel gas for internal combustion engines and home appliances.

(regarding the acronyms in the above emissions chart:

View the full Wikipedia page for Hydrogen compressed natural gas
↑ Return to Menu

Internal combustion engine in the context of Alcohol fuel

Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol) are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.

Most methanol is produced from natural gas, although it can be produced from biomass using very similar chemical processes. Ethanol is commonly produced from biological material through fermentation processes. Biobutanol has the advantage in combustion engines in that its energy density is closer to gasoline than the simpler alcohols (while still retaining over 25% higher octane rating); however, biobutanol is currently more difficult to produce than ethanol or methanol. When obtained from biological materials and/or biological processes, they are known as bioalcohols (e.g. "bioethanol"). There is no chemical difference between biologically produced and chemically produced alcohols.

View the full Wikipedia page for Alcohol fuel
↑ Return to Menu

Internal combustion engine in the context of François Isaac de Rivaz

François Isaac de Rivaz (December 19, 1752, in Paris – July 30, 1828, in Sion) was a French-born Swiss inventor and a politician. He invented a hydrogen-powered internal combustion engine with electric ignition and described it in a French patent published in 1807. In 1808 he fitted it into a primitive working vehicle – "the world's first internal combustion powered automobile".

View the full Wikipedia page for François Isaac de Rivaz
↑ Return to Menu