Propulsive nozzle in the context of "Internal combustion engine"

Play Trivia Questions online!

or

Skip to study material about Propulsive nozzle in the context of "Internal combustion engine"

Ad spacer

⭐ Core Definition: Propulsive nozzle

A propelling nozzle or exhaust ejector is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

Propelling nozzles accelerate the available gas to subsonic, transonic, or supersonic velocities depending on the power setting of the engine, their internal shape and the pressures at entry to, and exit from, the nozzle. The internal shape may be convergent or convergent-divergent (C-D). C-D nozzles can accelerate the jet to supersonic velocities within the divergent section, whereas a convergent nozzle cannot accelerate the jet beyond sonic speed.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Propulsive nozzle in the context of Internal combustion engine

An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to components of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine). This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

The first commercially successful internal combustion engines were invented in the mid-19th century. The first modern internal combustion engine, the Otto engine, was designed in 1876 by the German engineer Nicolaus Otto. The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar two-stroke and four-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described. In contrast, in external combustion engines, such as steam or Stirling engines, energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids for external combustion engines include air, hot water, pressurized water or even boiler-heated liquid sodium.

↓ Explore More Topics
In this Dossier