Fuel cell in the context of "Motor fuel"

Play Trivia Questions online!

or

Skip to study material about Fuel cell in the context of "Motor fuel"

Ad spacer

⭐ Core Definition: Fuel cell

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

The first fuel cells were invented by Sir William Grove in 1838. The first commercial use of fuel cells came almost a century later following the invention of the hydrogen–oxygen fuel cell by Francis Thomas Bacon in 1932. The alkaline fuel cell, also known as the Bacon fuel cell after its inventor, has been used in NASA space programs since the mid-1960s to generate power for satellites and space capsules. Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, trains, boats, motorcycles, and submarines.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Fuel cell in the context of Motor fuel

A motor fuel is a fuel that is used to provide power to the engine (motor) of vehicles — typically a heat engine that produces thermal energy via oxidative combustion of liquid or gaseous fuel and then converts the heat into mechanical energy through reciprocating pistons or gas turbines.

Currently, the majority of motor vehicles, powerboats and light aircraft worldwide are propelled by internal combustion engines powered by petroleum-based hydrocarbon fossil fuels such as gasoline, diesel or autogas, while larger ships and aircraft use marine diesel oil and kerosene to power gas/steam turbine, turboprop and jet engines. Other fuel types include ethanol, biodiesel, biogasoline, propane, compressed natural gas (CNG) and hydrogen (either using fuel cells or hydrogen combustion). There are also cars that use a hybrid drivetrain of different power sources. The use of synthetic alternative fuels (especially renewable biofuels) is increasing, especially in Europe, as well as increasing mass adoption of battery electric vehicles (which are powered by battery-stored electricity instead of fuels).

↓ Explore More Topics
In this Dossier

Fuel cell in the context of Radioisotope thermoelectric generator

A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts and is ideal for deployment in remote and harsh environments for extended periods with no risk of parts wearing out or malfunctioning.

RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. RTGs have been used as power sources in satellites, space probes, and uncrewed remote facilities such as a series of lighthouses built by the Soviet Union inside the Arctic Circle.

↑ Return to Menu

Fuel cell in the context of Surface science

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solidliquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquidgas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

↑ Return to Menu

Fuel cell in the context of Palladium

Palladium is a chemical element; it has the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), which was thought to be a planet at the time, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form together a group of elements referred to as the platinum group metals. They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

More than half the supply of palladium and its congener platinum is used in catalytic converters, which convert as much as 90% of the harmful gases in automobile exhaust (hydrocarbons, carbon monoxide, and nitrogen dioxide) into nontoxic substances (nitrogen, carbon dioxide and water vapor). Palladium is also used in electronics, dentistry, medicine, hydrogen purification, chemical applications, electrochemical sensors, electrosynthesis, groundwater treatment, and jewellery. Palladium is a key component of fuel cells, in which hydrogen and oxygen react to produce electricity, heat, and water.

↑ Return to Menu

Fuel cell in the context of Biogas

Biogas is a gaseous renewable energy source produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, wastewater, and food waste. Biogas is produced by anaerobic digestion with anaerobic organisms or methanogens inside an anaerobic digester, biodigester or a bioreactor. The gas composition is primarily methane (CH
4
) and carbon dioxide (CO
2
) and may have small amounts of hydrogen sulfide (H
2
S
), moisture and siloxanes. The methane can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used in fuel cells and for heating purposes, such as in cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.

Biogas can be upgraded to natural gas quality specifications by stripping carbon dioxide and other contaminants. Biogas that has been upgraded to interchangeability with natural gas is called Renewable Natural Gas (RNG). RNG can be used a drop-in fuel in the gas grid or to produce compressed natural gas as a vehicle fuel.

↑ Return to Menu

Fuel cell in the context of Electrochemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typically an external electric circuit, but not necessarily, as in electroless plating) between electrodes separated by an ionically conducting and electronically insulating electrolyte (or ionic species in a solution).

When a chemical reaction is driven by an electrical potential difference, as in electrolysis, or if a potential difference results from a chemical reaction as in an electric battery or fuel cell, it is called an electrochemical reaction. In electrochemical reactions, unlike in other chemical reactions, electrons are not transferred directly between atoms, ions, or molecules, but via the aforementioned electric circuit. This phenomenon is what distinguishes an electrochemical reaction from a conventional chemical reaction.

↑ Return to Menu