Infrared radiation in the context of Nanometre


Infrared radiation in the context of Nanometre

Infrared radiation Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Infrared radiation in the context of "Nanometre"


⭐ Core Definition: Infrared radiation

Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of red light (the longest waves in the visible spectrum), so IR is invisible to the human eye. IR is generally (according to ISO, CIE) understood to include wavelengths from around 780 nm (380 THz) to 1 mm (300 GHz). IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum. Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of EMR, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon.

It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered that infrared radiation is a type of invisible radiation in the spectrum lower in energy than red light, by means of its effect on a thermometer. Slightly more than half of the energy from the Sun was eventually found, through Herschel's studies, to arrive on Earth in the form of infrared. The balance between absorbed and emitted infrared radiation has an important effect on Earth's climate.

↓ Menu
HINT:

In this Dossier

Infrared radiation in the context of Methane

Methane (US: /ˈmɛθn/ METH-ayn, UK: /ˈmθn/ MEE-thayn) is a chemical compound with the chemical formula CH4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it is difficult because it is a gas at standard temperature and pressure. In the Earth's atmosphere methane is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Methane is an organic hydrocarbon, and among the simplest of organic compounds.

Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane.

View the full Wikipedia page for Methane
↑ Return to Menu

Infrared radiation in the context of Sun

The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is the main source of energy for life on Earth. The Sun has been an object of veneration in many cultures and a central subject for astronomical research since antiquity.

The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its mean distance from Earth is about 1.496×10 kilometres or about 8 light-minutes. The distance between the Sun and the Earth was used to define a unit of length called the astronomical unit, now defined to be 149.5978707×10 kilometres. Its diameter is about 1,391,400 km (864,600 mi), 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of the Sun's surface layer, its photosphere, consists mostly of hydrogen (~73%) and helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

View the full Wikipedia page for Sun
↑ Return to Menu

Infrared radiation in the context of Wave

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

There are two types of waves that are most commonly studied in classical physics: mechanical waves and electromagnetic waves. In a mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves, gravity waves, surface waves and string vibrations. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations. Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent). Electromagnetic waves, as determined by their frequencies (or wavelengths), have more specific designations including radio waves, infrared radiation, terahertz waves, visible light, ultraviolet radiation, X-rays and gamma rays.

View the full Wikipedia page for Wave
↑ Return to Menu

Infrared radiation in the context of Thermography

Infrared thermography (IRT), also known as thermal imaging, is a measurement and imaging technique in which a thermal camera detects infrared radiation originating from the surface of objects. This radiation has two main components: thermal emission from the object's surface, which depends on its temperature and emissivity, and reflected radiation from surrounding sources. When the object is not (fully) opaque, i.e. exhibits nonzero transmissivity at the cameras operating wavelengths, transmitted radiation also contributes to the observed signal. The result is a visible image called a thermogram. Thermal cameras most commonly operate in the long-wave infrared (LWIR) range (7–14 μm); less frequently, systems designed for the mid-wave infrared (MWIR) range (3–5 μm) are used.

Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature, and thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds. For example, humans and other warm-blooded animals become easily visible against their environment in day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

View the full Wikipedia page for Thermography
↑ Return to Menu

Infrared radiation in the context of Far infrared

Far infrared (FIR) or long wave refers to a specific range within the infrared spectrum of electromagnetic radiation. It encompasses radiation with wavelengths ranging from 15 μm (micrometers) to 1 mm, which corresponds to a frequency range of approximately 20 THz to 300 GHz. This places far infrared radiation within the CIE IR-B and IR-C bands. The longer wavelengths of the FIR spectrum overlap with a range known as terahertz radiation. Different sources may use different boundaries to define the far infrared range. For instance, astronomers often define it as wavelengths between 25 μm and 350 μm. Infrared photons possess significantly lower energy than photons in the visible light spectrum, with tens to hundreds of times less energy.

View the full Wikipedia page for Far infrared
↑ Return to Menu

Infrared radiation in the context of Wave (physics)

A wave, in physics, mathematics, engineering and related fields, is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

There are two types of waves that are most commonly studied in classical physics: mechanical waves and electromagnetic waves. In a mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves, gravity waves, surface waves and string vibrations. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations. Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent). Electromagnetic waves, as determined by their frequencies (or wavelengths), have more specific designations including radio waves, infrared radiation, terahertz waves, visible light, ultraviolet radiation, X-rays and gamma rays.

View the full Wikipedia page for Wave (physics)
↑ Return to Menu

Infrared radiation in the context of John Tyndall

John Tyndall (/ˈtɪndəl/; 2 August 1820 – 4 December 1893) was an Irish physicist. His scientific fame arose in the 1850s from his study of diamagnetism. Later he made discoveries in the realms of infrared radiation and the physical properties of air, proving the connection between atmospheric CO2 and what is now known as the greenhouse effect in 1859.

Tyndall also published more than a dozen science books which brought state-of-the-art 19th century experimental physics to a wide audience. From 1853 to 1887 he was professor of physics at the Royal Institution of Great Britain in London. He was elected as a member to the American Philosophical Society in 1868.

View the full Wikipedia page for John Tyndall
↑ Return to Menu

Infrared radiation in the context of Thermal imaging camera

A thermal imaging camera (colloquially known as a TIC) is a type of thermographic camera used in firefighting. By rendering infrared radiation as visible light, such cameras allow firefighters to see areas of heat through smoke, darkness, or heat-permeable barriers. Thermal imaging cameras are typically handheld, but may be integrated with other pieces of equipment such as helmets and SCBAs. They are constructed using heat- and water-resistant housings, and ruggedized to withstand the hazards of fireground operations, often meeting the requirements of NFPA 1801, Standard on Thermal Imagers for the Fire Service.

While they are expensive pieces of equipment, their popularity and adoption by firefighters in the United States is increasing markedly due to the increased availability of government equipment grants following the September 11 attacks in 2001. Thermal imaging cameras pick up body heat, and they are normally used in cases where people are trapped where rescuers cannot find them.

View the full Wikipedia page for Thermal imaging camera
↑ Return to Menu

Infrared radiation in the context of Radiometer

A radiometer is an instrument for measuring radiometric quantities such as radiant flux (power), irradiance, or radiance. Definitions typically limit radiometry to optical radiation, but some definitions include other kinds of electromagnetic radiation. According to at least one instrument manufacturer, radiometers usually measure infrared radiation or ultraviolet radiation.

Microwave radiometers operate in the microwave wavelengths. A roentgenometer is a radiometer for measuring the intensity of X-rays or gamma radiation.

View the full Wikipedia page for Radiometer
↑ Return to Menu

Infrared radiation in the context of Infrared heater

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

One classification of infrared heaters is by the wavelength bands of infrared emission.

View the full Wikipedia page for Infrared heater
↑ Return to Menu

Infrared radiation in the context of Solar atmosphere

The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is the main source of energy for life on Earth. The Sun has been an object of veneration in many cultures and a central subject for astronomical research since antiquity.

The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its mean distance from Earth is about 1.496×10 kilometres or about 8 light-minutes. The distance between the Sun and the Earth was used to define a unit of length called the astronomical unit (au), now defined to be 149.5978707×10 kilometres. Its diameter is about 1,391,400 km (864,600 mi), 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of the Sun's surface layer, its photosphere, consists mostly of hydrogen (~73%) and helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

View the full Wikipedia page for Solar atmosphere
↑ Return to Menu