Radiance in the context of Radiometer


Radiance in the context of Radiometer

Radiance Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Radiance in the context of "Radiometer"


⭐ Core Definition: Radiance

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr·m). It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

The related quantity spectral radiance is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

↓ Menu
HINT:

👉 Radiance in the context of Radiometer

A radiometer is an instrument for measuring radiometric quantities such as radiant flux (power), irradiance, or radiance. Definitions typically limit radiometry to optical radiation, but some definitions include other kinds of electromagnetic radiation. According to at least one instrument manufacturer, radiometers usually measure infrared radiation or ultraviolet radiation.

Microwave radiometers operate in the microwave wavelengths. A roentgenometer is a radiometer for measuring the intensity of X-rays or gamma radiation.

↓ Explore More Topics
In this Dossier

Radiance in the context of Light curve

In astronomy, a light curve is a graph of the light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y-axis and with time on the x-axis. The light is usually in a particular frequency interval or band.

Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets; or aperiodic, like the light curve of a nova, cataclysmic variable star, supernova, microlensing event, or binary as observed during occultation events. The study of a light curve and other observations can yield considerable information about the physical process that produces such a light curve, or constrain the physical theories about it.

View the full Wikipedia page for Light curve
↑ Return to Menu

Radiance in the context of Spectral power distribution

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance).

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength.

View the full Wikipedia page for Spectral power distribution
↑ Return to Menu

Radiance in the context of Luminance

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

The procedure for conversion from spectral radiance to luminance is standardized by the CIE and ISO.

View the full Wikipedia page for Luminance
↑ Return to Menu

Radiance in the context of Light field

A light field, or lightfield, is a vector function that describes the amount of light flowing in every direction through every point in a space. The space of all possible light rays is given by the five-dimensional plenoptic function, and the magnitude of each ray is given by its radiance. Michael Faraday was the first to propose that light should be interpreted as a field, much like the magnetic fields on which he had been working. The term light field was coined by Andrey Gershun in a classic 1936 paper on the radiometric properties of light in three-dimensional space.

The term "radiance field" may also be used to refer to similar, or identical concepts. The term is used in modern research such as neural radiance fields.

View the full Wikipedia page for Light field
↑ Return to Menu

Radiance in the context of Spectroradiometer

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance (lux or fc), Radiance (W/sr), Luminance (cd), Flux (Lumens or Watts), Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

Spectrometers are available in numerous packages and sizes covering many wavelength ranges. The effective wavelength (spectral) range of a spectrometer is determined not only by the grating dispersion ability but also depends on the detectors' sensitivity range. Limited by the semiconductor's band gap the silicon-based detector responds to 200-1100 nm while the InGaAs based detector is sensitive to 900-1700 nm (or out to 2500 nm with cooling).

View the full Wikipedia page for Spectroradiometer
↑ Return to Menu

Radiance in the context of BRDF

The bidirectional reflectance distribution function (BRDF), symbol , is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world light, in computer graphics algorithms, and in computer vision algorithms. The function takes an incoming light direction, , and outgoing direction, (taken in a coordinate system where the surface normal lies along the z-axis), and returns the ratio of reflected radiance exiting along to the irradiance incident on the surface from direction . Each direction is itself parameterized by azimuth angle and zenith angle , therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr, with steradians (sr) being a unit of solid angle.

View the full Wikipedia page for BRDF
↑ Return to Menu

Radiance in the context of Spectral radiance

In radiometry, spectral radiance or specific intensity is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr·m·Hz) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr·m)—commonly the watt per steradian per square metre per nanometre (W·sr·m·nm). The microflick is also used to measure spectral radiance in some fields.

Spectral radiance gives a full radiometric description of the field of classical electromagnetic radiation of any kind, including thermal radiation and light. It is conceptually distinct from the descriptions in explicit terms of Maxwellian electromagnetic fields or of photon distribution. It refers to material physics as distinct from psychophysics.

View the full Wikipedia page for Spectral radiance
↑ Return to Menu

Radiance in the context of Lambert's cosine law

In optics, Lambert's cosine law says that the observed radiant intensity or luminous intensity from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I0 cos θ. The law is also known as the cosine emission law or Lambert's emission law. It is named after Johann Heinrich Lambert, from his Photometria, published in 1760.

A surface which obeys Lambert's law is said to be Lambertian, and exhibits Lambertian reflectance. Such a surface has a constant radiance/luminance, regardless of the angle from which it is observed; a single human eye perceives such a surface as having a constant brightness, regardless of the angle from which the eye observes the surface. It has the same radiance because, although the emitted power from a given area element is reduced by the cosine of the emission angle, the solid angle, subtended by surface visible to the viewer, is reduced by the very same amount. Because the ratio between power and solid angle is constant, radiance (power per unit solid angle per unit projected source area) stays the same.

View the full Wikipedia page for Lambert's cosine law
↑ Return to Menu

Radiance in the context of Lambertian reflection

Lambertian reflectance is the property that defines an ideal "matte" or diffusely reflecting surface. The apparent brightness of a Lambertian surface to an observer is the same regardless of the observer's angle of view. More precisely, the reflected radiant intensity obeys Lambert's cosine law, which makes the reflected radiance the same in all directions. Lambertian reflectance is named after Johann Heinrich Lambert, who introduced the concept of perfect diffusion in his 1760 book Photometria.

View the full Wikipedia page for Lambertian reflection
↑ Return to Menu