Red in the context of "Infrared radiation"

Play Trivia Questions online!

or

Skip to study material about Red in the context of "Infrared radiation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Red in the context of Fire engine red

Fire engine red, also known as fire truck red in North America, is an informal name for an bright red commonly used on emergency vehicles in many countries on fire service vehicles, such as fire engines. The name does not refer to any particular shade of red; different fire services may have their own specifications. Bright red has long been used on fire vehicles.

↑ Return to Menu

Red in the context of Grand Duchess Charlotte Bridge

The Grand Duchess Charlotte Bridge (Luxembourgish: Groussherzogin-Charlotte-Bréck, French: Pont Grande-Duchesse Charlotte, German: Großherzogin-Charlotte-Brücke) is a road bridge in Luxembourg City, in southern Luxembourg. It carries the N51 across the Alzette, connecting Avenue John F. Kennedy, in Kirchberg, to Boulevard Robert Schuman, in Limpertsberg. The bridge is also known as the Red Bridge (Luxembourgish: Rout Bréck, German: Rote Brücke, French: Pont Rouge) on account of its distinctive red paintwork. It is the main route connecting the city centre, Ville Haute, to Kirchberg, the site of the city's European Union institutions.

↑ Return to Menu

Red in the context of Color vision

Color vision (CV), a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity.

Color perception is a part of the larger visual system and is mediated by a complex process between neurons that begins with differential stimulation of different types of photoreceptors by light entering the eye. Those photoreceptors then emit outputs that are propagated through many layers of neurons ultimately leading to higher cognitive functions in the brain. Color vision is found in many animals and is mediated by similar underlying mechanisms with common types of biological molecules and a complex history of the evolution of color vision within different animal taxa. In primates, color vision may have evolved under selective pressure for a variety of visual tasks including the foraging for nutritious young leaves, ripe fruit, and flowers, as well as detecting predator camouflage and emotional states in other primates.

↑ Return to Menu

Red in the context of Infrared

Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of red light (the longest waves in the visible spectrum), so IR is invisible to the human eye. IR is generally (according to ISO, CIE) understood to include wavelengths from around 780 nm (380 THz) to 1 mm (300 GHz). IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum. Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of EMR, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon.

It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered that infrared radiation is a type of invisible radiation in the spectrum lower in energy than red light, by means of its effect on a thermometer. Slightly more than half of the energy from the Sun was eventually found, through Herschel's studies, to arrive on Earth in the form of infrared. The balance between absorbed and emitted infrared radiation has an important effect on Earth's climate.

↑ Return to Menu

Red in the context of Hue

In color theory, hue is one of the properties (called color appearance parameters) of a color, defined in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

Hue can typically be represented quantitatively by a single number, often corresponding to an angular position around a central or neutral point or axis on a color space coordinate diagram (such as a chromaticity diagram) or color wheel, or by its dominant wavelength or by that of its complementary color. The other color appearance parameters are colorfulness, saturation (also known as intensity or chroma), lightness, and brightness. Usually, colors with the same hue are distinguished with adjectives referring to their lightness or colorfulness - for example: "light blue", "pastel blue", "vivid blue", and "cobalt blue". Exceptions include brown, which is a dark orange.

↑ Return to Menu

Red in the context of RGB

The RGB color model is an additive color model in which the red, green, and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography and colored lighting. Before the electronic age, the RGB color model already had a solid theory behind it, based in human perception of colors.

↑ Return to Menu

Red in the context of Green

Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495–570 nm. In subtractive color systems, used in painting and color printing, it is created by a combination of yellow and cyan; in the RGB color model, used on television and computer screens, it is one of the additive primary colors, along with red and blue, which are mixed in different combinations to create all other colors. By far the largest contributor to green in nature is chlorophyll, the chemical by which plants photosynthesize and convert sunlight into chemical energy. Many creatures have adapted to their green environments by taking on a green hue themselves as camouflage. Several minerals have a green color, including the emerald, which is colored green by its chromium content.

During post-classical and early modern Europe, green was the color commonly associated with wealth, merchants, bankers, and the gentry, while red was reserved for the nobility. For this reason, the costume of the Mona Lisa by Leonardo da Vinci and the benches in the British House of Commons are green while those in the House of Lords are red. It also has a long historical tradition as the color of Ireland and of Gaelic culture. It is the historic color of Islam, representing the lush vegetation of Paradise. It was the color of the banner of Muhammad, and is found in the flags of nearly all Islamic countries.

↑ Return to Menu

Red in the context of Orange (colour)

Orange is the colour between yellow and red on the spectrum of visible light. The human eyes perceive orange when observing light with a dominant wavelength between roughly 585 and 620 nanometres. In traditional colour theory, it is a secondary colour of pigments, produced by mixing yellow and red. In the RGB colour model, it is a tertiary colour. It is named after the fruit of the same name.

The orange colour of many fruits and vegetables, such as carrots, pumpkins, sweet potatoes, and oranges, comes from carotenes, a type of photosynthetic pigment. These pigments convert the light energy that the plants absorb from the Sun into chemical energy for the plants' growth. Similarly, the hues of autumn leaves are from the same pigment after chlorophyll is removed.

↑ Return to Menu

Red in the context of Extinction (astronomy)

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars lying near the plane of the Milky Way which are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies (photometric system) is roughly 1.8 magnitudes per kiloparsec.

For Earth-bound observers, extinction arises both from the interstellar medium and the Earth's atmosphere; it may also arise from circumstellar dust around an observed object. Strong extinction in Earth's atmosphere of some wavelength regions (such as X-ray, ultraviolet, and infrared) is overcome by the use of space-based observatories. Since blue light is much more strongly attenuated than red light, extinction causes objects to appear redder than expected; this phenomenon is called interstellar reddening.

↑ Return to Menu