RGB in the context of "Red"

Play Trivia Questions online!

or

Skip to study material about RGB in the context of "Red"

Ad spacer

⭐ Core Definition: RGB

The RGB color model is an additive color model in which the red, green, and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography and colored lighting. Before the electronic age, the RGB color model already had a solid theory behind it, based in human perception of colors.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

RGB in the context of Color

Color (or colour in Commonwealth English) is the visual perception produced by the activation of the different types of cone cells in the eye caused by light. Though color is not an inherent property of matter, color perception is related to an object's light absorption, emission, reflection and transmission. For most humans, visible wavelengths of light are the ones perceived in the visible light spectrum, with three types of cone cells (trichromacy). Other animals may have a different number of cone cell types or have eyes sensitive to different wavelengths, such as bees that can distinguish ultraviolet, and thus have a different color sensitivity range. Animal perception of color originates from different light wavelength or spectral sensitivity in cone cell types, which is then processed by the brain.

Colors have perceived properties such as hue, colorfulness, and lightness. Colors can also be additively mixed (mixing light) or subtractively mixed (mixing pigments). If one color is mixed in the right proportions, because of metamerism, they may look the same as another stimulus with a different reflection or emission spectrum. For convenience, colors can be organized in a color space, which when being abstracted as a mathematical color model can assign each region of color with a corresponding set of numbers. As such, color spaces are an essential tool for color reproduction in print, photography, computer monitors, and television. Some of the most well-known color models and color spaces are RGB, CMYK, HSL/HSV, CIE Lab, and YCbCr/YUV.

↑ Return to Menu

RGB in the context of YCbCr

YCbCr, Y′CbCr, also written as YCBCR or Y′CBCR, is a family of color spaces used as a part of the color image pipeline in digital video and photography systems. Like YPBPR, it is based on RGB primaries; the two are generally equivalent, but YCBCR is intended for digital video, while YPBPR is designed for use in analog systems.

Y′ is the luma component, and CB and CR are the blue-difference and red-difference chroma components. Luma Y′ (with prime) is distinguished from luminance Y, meaning that light intensity is nonlinearly encoded based on gamma corrected RGB primaries.

↑ Return to Menu

RGB in the context of Color science

Color science is the scientific study of color including lighting and optics; measurement of light and color; the physiology, psychophysics, and modeling of color vision; and color reproduction. It is the modern extension of traditional color theory.

↑ Return to Menu

RGB in the context of Genesis (camera)

The Genesis is a discontinued high-end digital movie camera developed by Panavision, and was available solely by rental. It is based on a proprietary Super 35 1.78:1 (16:9) aspect ratio, 12.4-megapixel, RGB filtered CCD sensor. It was first used by a feature crew to shoot Bryan Singer's Superman Returns, and was shortly followed up thereafter by the World War I film Flyboys. However, the computer effect-heavy nature of these two movies meant that ultimately the comedy Scary Movie 4 was the first theatrically released feature primarily shot with the Genesis. It was discontinued in 2012 and succeeded by the Millennium DXL line developed with Red Digital Cinema.

↑ Return to Menu

RGB in the context of Color wheel

A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

Some sources use the terms color wheel and color circle interchangeably; however, one term or the other may be more prevalent in certain fields or certain versions as mentioned above. For instance, some reserve the term color wheel for mechanical rotating devices, such as color tops, filter wheels or the Newton disc. Others classify various color wheels as color disc, color chart, and color scale varieties.

↑ Return to Menu

RGB in the context of Violet (color)

Violet is the color of light at the short wavelength end of the visible spectrum. It is one of the seven colors that Isaac Newton labeled when dividing the spectrum of visible light in 1672. Violet light has a wavelength between approximately 380 and 450 nanometers. The color's name is derived from the Viola genus of flowers.

In the RGB color model used in computer and television screens, violet is produced by mixing red and blue light, with more blue than red. In the RYB color model historically used by painters, violet is created with a combination of red and blue pigments and is located between blue and purple on the color wheel. In the CMYK color model used in printing, violet is created with a combination of magenta and cyan pigments, with more magenta than cyan. On the RGB/CMY(K) color wheel, violet is located between blue and magenta.

↑ Return to Menu

RGB in the context of Color image pipeline

An image pipeline or video pipeline is the set of components commonly used between an image source (such as a camera, a scanner, or the rendering engine in a computer game), and an image renderer (such as a television set, a computer screen, a computer printer or cinema screen), or for performing any intermediate digital image processing consisting of two or more separate processing blocks. An image/video pipeline may be implemented as computer software, in a digital signal processor, on an FPGA, or as fixed-function ASIC. In addition, analog circuits can be used to do many of the same functions.

Typical components include image sensor corrections (including debayering or applying a Bayer filter), noise reduction, image scaling, gamma correction, image enhancement, colorspace conversion (between formats such as RGB, YUV or YCbCr), chroma subsampling, framerate conversion, image compression/video compression (such as JPEG), and computer data storage/data transmission.

↑ Return to Menu

RGB in the context of YPbPr

YPbPr or , also written as YPBPR, is a color space used in video electronics, in particular in reference to component video cables. Like YCBCR, it is based on gamma corrected RGB primaries; the two are numerically equivalent but YPBPR is designed for use in analog systems while YCBCR is intended for digital video. The EOTF (gamma correction) may be different from common sRGB EOTF and BT.1886 EOTF. Sync is carried on the Y channel and is a bi-level sync signal, but in HD formats a tri-level sync is used and is typically carried on all channels.

YPBPR is commonly referred to as component video by manufacturers; however, there are many types of component video, most of which are some form of RGB. Some video cards come with video-in video-out (VIVO) ports for connecting to component video devices.

↑ Return to Menu