Inference in the context of "Deductive reasoning"

⭐ In the context of deductive reasoning, what is the crucial difference between a valid argument and a sound argument?

Ad spacer

⭐ Core Definition: Inference

Inferences are steps in logical reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BC). Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

Various fields study how inference is done in practice. Human inference (i.e. how humans draw conclusions) is traditionally studied within the fields of logic, argumentation studies, and cognitive psychology; artificial intelligence researchers develop automated inference systems to emulate human inference. Statistical inference uses mathematics to draw conclusions in the presence of uncertainty. This generalizes deterministic reasoning, with the absence of uncertainty as a special case. Statistical inference uses quantitative or qualitative (categorical) data which may be subject to random variations.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Inference in the context of Deductive reasoning

Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning.

Deductive logic studies under what conditions an argument is valid. According to the semantic approach, an argument is valid if there is no possible interpretation of the argument whereby its premises are true and its conclusion is false. The syntactic approach, by contrast, focuses on rules of inference, that is, schemas of drawing a conclusion from a set of premises based only on their logical form. There are various rules of inference, such as modus ponens and modus tollens. Invalid deductive arguments, which do not follow a rule of inference, are called formal fallacies. Rules of inference are definitory rules and contrast with strategic rules, which specify what inferences one needs to draw in order to arrive at an intended conclusion.

↓ Explore More Topics
In this Dossier

Inference in the context of Mathematical proof

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Proofs employ logic expressed in mathematical symbols, along with natural language that usually admits some ambiguity. In most mathematical literature, proofs are written in terms of rigorous informal logic. Purely formal proofs, written fully in symbolic language without the involvement of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics, oral traditions in the mainstream mathematical community or in other cultures. The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.

↑ Return to Menu

Inference in the context of Knowledge

Knowledge is an awareness of facts, a familiarity with individuals and situations, or a practical skill. Knowledge of facts, also called propositional knowledge, is often characterized as true belief that is distinct from opinion or guesswork by virtue of justification. While there is wide agreement among philosophers that propositional knowledge is a form of true belief, many controversies focus on justification. This includes questions like how to understand justification, whether it is needed at all, and whether something else besides it is needed. These controversies intensified in the latter half of the 20th century due to a series of thought experiments called Gettier cases that provoked alternative definitions.

Knowledge can be produced in many ways. The main source of empirical knowledge is perception, which involves the usage of the senses to learn about the external world. Introspection allows people to learn about their internal mental states and processes. Other sources of knowledge include memory, rational intuition, inference, and testimony. According to foundationalism, some of these sources are basic in that they can justify beliefs, without depending on other mental states. Coherentists reject this claim and contend that a sufficient degree of coherence among all the mental states of the believer is necessary for knowledge. According to infinitism, an infinite chain of beliefs is needed.

↑ Return to Menu

Inference in the context of Fact

A fact is a true datum about one or more aspects of a circumstance. Standard reference works are often used to check facts. Scientific facts are verified by repeatable careful observation or measurement by experiments or other means. Generally speaking, facts are independent of belief, knowledge and opinion. Facts are different from inferences, theories, values, and objects.

For example, "This sentence contains words." accurately describes a linguistic fact, and "the Sun is a star" describes an astronomical fact. Further, "Abraham Lincoln was the 16th president of the United States" and "Abraham Lincoln was assassinated" are both historical facts.

↑ Return to Menu

Inference in the context of Logical reasoning

Logical reasoning is a mental activity that aims to arrive at a conclusion in a rigorous way. It happens in the form of inferences or arguments by starting from a set of premises and reasoning to a conclusion supported by these premises. The premises and the conclusion are propositions, i.e. true or false claims about what is the case. Together, they form an argument. Logical reasoning is norm-governed in the sense that it aims to formulate correct arguments that any rational person would find convincing. The main discipline studying logical reasoning is logic.

Distinct types of logical reasoning differ from each other concerning the norms they employ and the certainty of the conclusion they arrive at. Deductive reasoning offers the strongest support: the premises ensure the conclusion, meaning that it is impossible for the conclusion to be false if all the premises are true. Such an argument is called a valid argument, for example: all men are mortal; Socrates is a man; therefore, Socrates is mortal. For valid arguments, it is not important whether the premises are actually true but only that, if they were true, the conclusion could not be false. Valid arguments follow a rule of inference, such as modus ponens or modus tollens. Deductive reasoning plays a central role in formal logic and mathematics.

↑ Return to Menu

Inference in the context of Argumentation theory

Argumentation theory is the interdisciplinary study of how conclusions can be supported or undermined by premises through logical reasoning. With historical origins in logic, dialectic, and rhetoric, argumentation theory includes the arts and sciences of civil debate, dialogue, conversation, and persuasion. It studies rules of inference, logic, and procedural rules in both artificial and real-world settings.

Argumentation includes various forms of dialogue such as deliberation and negotiation which are concerned with collaborative decision-making procedures. It also encompasses eristic dialogue, the branch of social debate in which victory over an opponent is the primary goal, and didactic dialogue used for teaching. This discipline also studies the means by which people can express and rationally resolve or at least manage their disagreements.

↑ Return to Menu

Inference in the context of Analogy

Analogy is a comparison or correspondence between two things (or two groups of things) because of a third element that they are considered to share.

Logically, it is an inference or an argument from one particular to another particular, as opposed to deduction, induction, and abduction. It is also used where at least one of the premises, or the conclusion, is general rather than particular in nature. It has the general form A is to B as C is to D.

↑ Return to Menu

Inference in the context of Modus tollens

In propositional logic, modus tollens (/ˈmdəs ˈtɒlɛnz/) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

The history of the inference rule modus tollens goes back to antiquity. The first to explicitly describe the argument form modus tollens was Theophrastus.

↑ Return to Menu