Hypothesis testing in the context of Wald test


Hypothesis testing in the context of Wald test

Hypothesis testing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hypothesis testing in the context of "Wald test"


⭐ Core Definition: Hypothesis testing

A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests are in use and noteworthy.

↓ Menu
HINT:

👉 Hypothesis testing in the context of Wald test

In statistics, the Wald test (named after Abraham Wald) assesses constraints on statistical parameters based on the weighted distance between the unrestricted estimate and its hypothesized value under the null hypothesis, where the weight is the precision of the estimate. Intuitively, the larger this weighted distance, the less likely it is that the constraint is true. While the finite sample distributions of Wald tests are generally unknown, it has an asymptotic χ-distribution under the null hypothesis, a fact that can be used to determine statistical significance.

Together with the Lagrange multiplier test and the likelihood-ratio test, the Wald test is one of three classical approaches to hypothesis testing. An advantage of the Wald test over the other two is that it only requires the estimation of the unrestricted model, which lowers the computational burden as compared to the likelihood-ratio test. However, a major disadvantage is that (in finite samples) it is not invariant to changes in the representation of the null hypothesis; in other words, algebraically equivalent expressions of non-linear parameter restriction can lead to different values of the test statistic. That is because the Wald statistic is derived from a Taylor expansion, and different ways of writing equivalent nonlinear expressions lead to nontrivial differences in the corresponding Taylor coefficients. Another aberration, known as the Hauck–Donner effect, can occur in binomial models when the estimated (unconstrained) parameter is close to the boundary of the parameter space—for instance a fitted probability being extremely close to zero or one—which results in the Wald test no longer monotonically increasing in the distance between the unconstrained and constrained parameter.

↓ Explore More Topics
In this Dossier

Hypothesis testing in the context of Scientific research

The scientific method is an empirical method for acquiring knowledge through careful observation, rigorous skepticism, hypothesis testing, and experimental validation. Developed from ancient and medieval practices, it acknowledges that cognitive assumptions can distort the interpretation of the observation. The scientific method has characterized science since at least the 17th century. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

Although procedures vary across fields, the underlying process is often similar. In more detail: the scientific method involves making conjectures (hypothetical explanations), predicting the logical consequences of hypothesis, then carrying out experiments or empirical observations based on those predictions. A hypothesis is a conjecture based on knowledge obtained while seeking answers to the question. Hypotheses can be very specific or broad but must be falsifiable, implying that it is possible to identify a possible outcome of an experiment or observation that conflicts with predictions deduced from the hypothesis; otherwise, the hypothesis cannot be meaningfully tested.

View the full Wikipedia page for Scientific research
↑ Return to Menu

Hypothesis testing in the context of Efficiency (statistics)

In statistics, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.

The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal comparison measure.

View the full Wikipedia page for Efficiency (statistics)
↑ Return to Menu

Hypothesis testing in the context of Randomised decision rule

In statistical decision theory, a randomised decision rule or mixed decision rule is a decision rule that associates probabilities with deterministic decision rules. In finite decision problems, randomised decision rules define a risk set which is the convex hull of the risk points of the nonrandomised decision rules.

As nonrandomised alternatives always exist to randomised Bayes rules, randomisation is not needed in Bayesian statistics, although frequentist statistical theory sometimes requires the use of randomised rules to satisfy optimality conditions such as minimax, most notably when deriving confidence intervals and hypothesis tests about discrete probability distributions.

View the full Wikipedia page for Randomised decision rule
↑ Return to Menu