Variance in the context of Efficiency (statistics)


Variance in the context of Efficiency (statistics)

Variance Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Variance in the context of "Efficiency (statistics)"


⭐ Core Definition: Variance

In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers are spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard deviation is more commonly reported as a measure of dispersion once the calculation is finished. Another disadvantage is that the variance is not finite for many distributions.

↓ Menu
HINT:

In this Dossier

Variance in the context of Mayor

In many countries, a mayor is the highest-ranking official in a municipal government such as that of a city or a town. Worldwide, there is a wide variance in local laws and customs regarding the powers and responsibilities of a mayor as well as the means by which a mayor is elected or otherwise mandated. Depending on the system chosen, a mayor may be the chief executive officer of the municipal government, may simply chair a multi-member governing body with little or no independent power, or may play a solely ceremonial role. A mayor's duties and responsibilities may be to appoint and oversee municipal managers and employees, provide basic governmental services to constituents, and execute the laws and ordinances passed by a municipal governing body (or mandated by a state, territorial or national governingbody). Options for selection of a mayor include direct election by the public, or selection by an elected governing council or board.

The term mayor shares a linguistic origin with the military rank of major, both ultimately derived from French majeur, which in turn derives from Latin maior, the comparative form of the adjective magnus.

View the full Wikipedia page for Mayor
↑ Return to Menu

Variance in the context of Statistical dispersion

In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.

Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions.

View the full Wikipedia page for Statistical dispersion
↑ Return to Menu

Variance in the context of Normal distribution

In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed and is called a normal deviate.

View the full Wikipedia page for Normal distribution
↑ Return to Menu

Variance in the context of Descriptive statistics

A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics. Descriptive statistics is distinguished from inferential statistics (or inductive statistics) by its aim to summarize a sample, rather than use the data to learn about the population that the sample of data is thought to represent. This generally means that descriptive statistics, unlike inferential statistics, is not developed on the basis of probability theory, and are frequently nonparametric statistics. Even when a data analysis draws its main conclusions using inferential statistics, descriptive statistics are generally also presented. For example, in papers reporting on human subjects, typically a table is included giving the overall sample size, sample sizes in important subgroups (e.g., for each treatment or exposure group), and demographic or clinical characteristics such as the average age, the proportion of subjects of each sex, the proportion of subjects with related co-morbidities, etc.

Some measures that are commonly used to describe a data set are measures of central tendency and measures of variability or dispersion. Measures of central tendency include the mean, median and mode, while measures of variability include the standard deviation (or variance), the minimum and maximum values of the variables, kurtosis and skewness.

View the full Wikipedia page for Descriptive statistics
↑ Return to Menu

Variance in the context of Standard deviation

In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its mean. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. The standard deviation is commonly used in the determination of what constitutes an outlier and what does not. Standard deviation may be abbreviated SD or std dev, and is most commonly represented in mathematical texts and equations by the lowercase Greek letter σ (sigma), for the population standard deviation, or the Latin letter s, for the sample standard deviation.

The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. (For a finite population, variance is the average of the squared deviations from the mean.) A useful property of the standard deviation is that, unlike the variance, it is expressed in the same unit as the data. Standard deviation can also be used to calculate standard error for a finite sample, and to determine statistical significance.

View the full Wikipedia page for Standard deviation
↑ Return to Menu

Variance in the context of Pairwise independence

In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated.

A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies

View the full Wikipedia page for Pairwise independence
↑ Return to Menu

Variance in the context of Financial risk

Financial risk is any of various types of risk associated with financing, including financial transactions that include company loans in risk of default. Often it is understood to include only downside risk, meaning the potential for financial loss and uncertainty about its extent.

Modern portfolio theory initiated by Harry Markowitz in 1952 under his thesis titled "Portfolio Selection" is the discipline and study which pertains to managing market and financial risk. In modern portfolio theory, the variance (or standard deviation) of a portfolio is used as the definition of risk.

View the full Wikipedia page for Financial risk
↑ Return to Menu

Variance in the context of Sampling fraction

In sampling theory, the sampling fraction is the ratio of sample size to population size or, in the context of stratified sampling, the ratio of the sample size to the size of the stratum.The formula for the sampling fraction is

where n is the sample size and N is the population size. A sampling fraction value close to 1 will occur if the sample size is relatively close to the population size. When sampling from a finite population without replacement, this may cause dependence between individual samples. To correct for this dependence when calculating the sample variance, a finite population correction (or finite population multiplier) of may be used. If the sampling fraction is small, less than 0.05, then the sample variance is not appreciably affected by dependence, and the finite population correction may be ignored.

View the full Wikipedia page for Sampling fraction
↑ Return to Menu

Variance in the context of Sample mean

The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.

The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales. The sample mean is used as an estimator for the population mean, the average value in the entire population, where the estimate is more likely to be close to the population mean if the sample is large and representative. The reliability of the sample mean is estimated using the standard error, which in turn is calculated using the variance of the sample. If the sample is random, the standard error falls with the size of the sample and the sample mean's distribution approaches the normal distribution as the sample size increases.

View the full Wikipedia page for Sample mean
↑ Return to Menu

Variance in the context of Stationary process

In mathematics and statistics, a stationary process (also called a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose statistical properties, such as mean and variance, do not change over time. More formally, the joint probability distribution of the process remains the same when shifted in time. This implies that the process is statistically consistent across different time periods. Because many statistical procedures in time series analysis assume stationarity, non-stationary data are frequently transformed to achieve stationarity before analysis.

A common cause of non-stationarity is a trend in the mean, which can be due to either a unit root or a deterministic trend. In the case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. With a deterministic trend, the process is called trend-stationary, and shocks have only transitory effects, with the variable tending towards a deterministically evolving mean. A trend-stationary process is not strictly stationary but can be made stationary by removing the trend. Similarly, processes with unit roots can be made stationary through differencing.

View the full Wikipedia page for Stationary process
↑ Return to Menu

Variance in the context of Big Five personality traits

In psychology and psychometrics, the big five personality trait model or five-factor model (FFM)—sometimes called by the acronym OCEAN or CANOE—is a scientific model for measuring and describing human personality traits. The framework groups variation in personality into five separate factors, all measured on a continuous scale:

The five-factor model was developed using empirical research into the language people used to describe themselves, which found patterns and relationships between the words people use to describe themselves. For example, because someone described as "hard-working" is more likely to be described as "prepared" and less likely to be described as "messy", all three traits are grouped under conscientiousness. Using dimensionality reduction techniques, psychologists showed that most (though not all) of the variance in human personality can be explained using only these five factors.

View the full Wikipedia page for Big Five personality traits
↑ Return to Menu

Variance in the context of Kalman filter

In statistics and control theory, Kalman filtering (also known as linear quadratic estimation) is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, to produce estimates of unknown variables that tend to be more accurate than those based on a single measurement, by estimating a joint probability distribution over the variables for each time-step. The filter is constructed as a mean squared error minimiser, but an alternative derivation of the filter is also provided showing how the filter relates to maximum likelihood statistics. The filter is named after Rudolf E. Kálmán.

Kalman filtering has numerous technological applications. A common application is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and ships positioned dynamically. Furthermore, Kalman filtering is much applied in time series analysis tasks such as signal processing and econometrics. Kalman filtering is also important for robotic motion planning and control, and can be used for trajectory optimization. Kalman filtering also works for modeling the central nervous system's control of movement. Due to the time delay between issuing motor commands and receiving sensory feedback, the use of Kalman filters provides a realistic model for making estimates of the current state of a motor system and issuing updated commands.

View the full Wikipedia page for Kalman filter
↑ Return to Menu

Variance in the context of Fisher information

In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.

The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth). The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates. It can also be used in the formulation of test statistics, such as the Wald test.

View the full Wikipedia page for Fisher information
↑ Return to Menu

Variance in the context of Precision (statistics)

In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, .For univariate distributions, the precision matrix degenerates into a scalar precision, defined as the reciprocal of the variance, .

Other summary statistics of statistical dispersion also called precision (or imprecision)include the reciprocal of the standard deviation, ; the standard deviation itself and the relative standard deviation;as well as the standard error and the confidence interval (or its half-width, the margin of error).

View the full Wikipedia page for Precision (statistics)
↑ Return to Menu

Variance in the context of Coalescent theory

Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, meaning that each variant is equally likely to have been passed from one generation to the next. The model looks backward in time, merging alleles into a single ancestral copy according to a random process in coalescence events. Under this model, the expected time between successive coalescence events increases almost exponentially back in time (with wide variance). Variance in the model comes from both the random passing of alleles from one generation to the next, and the random occurrence of mutations in these alleles.

The mathematical theory of the coalescent was developed independently by several groups in the early 1980s as a natural extension of classical population genetics theory and models, but can be primarily attributed to John Kingman. Advances in coalescent theory include recombination, selection, overlapping generations and virtually any arbitrarily complex evolutionary or demographic model in population genetic analysis.

View the full Wikipedia page for Coalescent theory
↑ Return to Menu

Variance in the context of Modern portfolio theory

Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. The variance of return (or its transformation, the standard deviation) is used as a measure of risk, because it is tractable when assets are combined into portfolios. Often, the historical variance and covariance of returns is used as a proxy for the forward-looking versions of these quantities, but other, more sophisticated methods are available.

Economist Harry Markowitz introduced MPT in a 1952 paper, for which he was later awarded a Nobel Memorial Prize in Economic Sciences; see Markowitz model.

View the full Wikipedia page for Modern portfolio theory
↑ Return to Menu

Variance in the context of Squared deviations from the mean

Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for analysis of variance involve the partitioning of a sum of SDM.

View the full Wikipedia page for Squared deviations from the mean
↑ Return to Menu

Variance in the context of Covariance

In probability theory and statistics, covariance is a measure of the joint variability of two random variables.

The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one variable mainly correspond with greater values of the other variable, and the same holds for lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when greater values of one variable mainly correspond to lesser values of the other (that is, the variables tend to show opposite behavior), the covariance is negative. One feature of covariance is that it has units of measurement and the magnitude of the covariance is affected by said units. This means changing the units (e.g., from meters to millimeters) changes the covariance value proportionally, making it difficult to assess the strength of the relationship from the covariance alone; In some situations, it is desirable to compare the strength of the joint association between different pairs of random variables that do not necessarily have the same units. In those situations, we use the correlation coefficient, which normalizes the covariance by dividing by the geometric mean of the total variances (i.e., the product of the standard deviations) for the two random variables to get a result between -1 and 1 and makes the units irrelevant.

View the full Wikipedia page for Covariance
↑ Return to Menu

Variance in the context of Sample standard deviation

In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its mean. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD or std dev, and is most commonly represented in mathematical texts and equations by the lowercase Greek letter σ (sigma), for the population standard deviation, or the Latin letter s, for the sample standard deviation.

The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. (For a finite population, variance is the average of the squared deviations from the mean.) A useful property of the standard deviation is that, unlike the variance, it is expressed in the same unit as the data. Standard deviation can also be used to calculate standard error for a finite sample, and to determine statistical significance.

View the full Wikipedia page for Sample standard deviation
↑ Return to Menu