Geologic in the context of "Texture (crystalline)"

Play Trivia Questions online!

or

Skip to study material about Geologic in the context of "Texture (crystalline)"

Ad spacer

⭐ Core Definition: Geologic

Geology is a branch of natural science concerned with the Earth and other astronomical bodies, the rocks of which they are composed, and the processes by which they change over time. The name comes from Ancient Greek γῆ () 'earth' and λoγία (-logía) 'study of, discourse'. Modern geology significantly overlaps all other Earth sciences, including hydrology. It is integrated with Earth system science and planetary science.

Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages. By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth. Geology provides evidence for plate tectonics, the evolutionary history of life, and the Earth's past climates.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Geologic in the context of Texture (crystalline)

In materials science and related fields, crystallographic texture is the distribution of crystallographic orientations of a polycrystalline sample. A sample in which these orientations are fully random or is amorphous and thus no crystallographic planes, is said to have no texture. If the crystallographic orientations are not random, but have some preferred orientation, then the sample may have a weak, moderate or strong texture. The degree is dependent on the percentage of crystals having the preferred orientation.

Texture is seen in almost all engineered materials, and can have a great influence on materials properties. The texture forms in materials during thermo-mechanical processes, for example during production processes e.g. rolling. Consequently, the rolling process is often followed by a heat treatment to reduce the amount of unwanted texture. Controlling the production process in combination with the characterization of texture and the material's microstructure help to determine the materials properties, i.e. the processing-microstructure-texture-property relationship. Also, geologic rocks show texture due to their thermo-mechanic history of formation processes.

↓ Explore More Topics
In this Dossier

Geologic in the context of Sedimentary basin analysis

Sedimentary basin analysis is a geologic method by which the formation and evolution history of a sedimentary basin is revealed, by analyzing the sediment fill and subsidence. Subsidence of sedimentary basins generates the spatial distribution of accommodation infilling sediments. Aspects of the sediment, namely its composition, primary structures, and internal architecture, can be synthesized into a history of the basin fill. Such a synthesis can reveal how the basin formed, how the sediment fill was transported or precipitated, and reveal sources of the sediment fill. From such syntheses, models can be developed to explain broad basin formation mechanisms. Examples of such basin classifications include intracratonic, rift, passive margin, strike-slip, forearc, backarc-marginal sea, fold and thrust belt, and foreland basins.

Sedimentary basin analysis is largely conducted by two types of geologists who have slightly different goals and approaches. The petroleum geologist, whose ultimate goal is to determine the possible presence and extent of hydrocarbons and hydrocarbon-bearing rocks in a basin, and the academic geologist, who may be concerned with any or all facets of a basin's evolution. Petroleum industry basin analysis is often conducted on subterranean basins through the use of reflection seismology and data from well logging. Academic geologists study subterranean basins as well as those basins which have been exhumed and dissected by subsequent tectonic events. Thus, academics sometimes use petroleum industry techniques, but in many cases, they are able to study rocks at the surface. Techniques used to study surficial sedimentary rocks include: measuring stratigraphic sections, identifying sedimentary depositional environments and constructing a geological map.

↑ Return to Menu

Geologic in the context of Turbidites

A turbidite is the geologic deposit of a turbidity current, which is a type of amalgamation of fluidal and sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean.

↑ Return to Menu

Geologic in the context of Impact structure

An impact structure is a generally circular or craterlike geologic structure of deformed bedrock or sediment produced by impact on a planetary surface, whatever the stage of erosion of the structure. In contrast, an impact crater is the surface expression of an impact structure. In many cases, on Earth, the impact crater has been destroyed by erosion, leaving only the deformed rock or sediment of the impact structure behind. This is the fate of almost all old impact craters on Earth, unlike the ancient pristine craters preserved on the Moon and other geologically inactive rocky bodies with old surfaces in the Solar System. Impact structure is synonymous with the less commonly used term astrobleme meaning "star wound".

In an impact structure, the typical visible and topographic expressions of an impact crater are no longer obvious. Any meteorite fragments that may once have been present would be long since eroded away. Possible impact structures may be initially recognized by their anomalous geological character or geophysical expression. These may still be confirmed as impact structures by the presence of shocked minerals (particularly shocked quartz), shatter cones, geochemical evidence of extraterrestrial material or other methods.

↑ Return to Menu

Geologic in the context of Wingate Sandstone

The Wingate Sandstone is a geologic formation in the Glen Canyon Group of the Colorado Plateau province of the United States which crops out in northern Arizona, northwest Colorado, Nevada, and Utah.

↑ Return to Menu

Geologic in the context of Badlands

Badlands are a type of dry terrain where softer sedimentary rocks and clay-rich soils have been extensively eroded. They are characterized by steep slopes, minimal vegetation, lack of a substantial regolith, and high drainage density. Ravines, gullies, buttes, hoodoos and other such geologic forms are common in badlands.

Badlands are found on every continent except Antarctica, being most common where there are unconsolidated sediments. They are often difficult to navigate by foot, and are unsuitable for agriculture. Most are a result of natural processes, but destruction of vegetation by overgrazing or pollution can produce anthropogenic badlands.

↑ Return to Menu

Geologic in the context of Paleoseismology

Paleoseismology is the study of ancient earthquakes using geologic evidence, such as geologic sediments and rocks. It is used to supplement seismic monitoring to calculate seismic hazard. Paleoseismology is usually restricted to geologic regimes that have undergone continuous sediment creation for the last few thousand years, such as swamps, lakes, river beds and shorelines.

↑ Return to Menu