Astronomical bodies in the context of "Geologic"

Play Trivia Questions online!

or

Skip to study material about Astronomical bodies in the context of "Geologic"

Ad spacer

⭐ Core Definition: Astronomical bodies

An astronomical object, celestial object, stellar object or heavenly object is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body, celestial body or heavenly body is a single, tightly bound, contiguous physical object, while an astronomical or celestial object admits a more complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Astronomical bodies in the context of Geology

Geology is a branch of natural science concerned with the Earth and other astronomical bodies, the rocks of which they are composed, and the processes by which they change over time. The name comes from Ancient Greek γῆ () 'earth' and λoγία (-logía) 'study of, discourse'. Modern geology significantly overlaps all other Earth sciences, including hydrology. It is integrated with Earth system science and planetary science.

Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages. By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth. Geology provides evidence for plate tectonics, the evolutionary history of life, and the Earth's past climates.

↑ Return to Menu

Astronomical bodies in the context of Greenhouse gas

Greenhouse gases (GHGs) are the gases in an atmosphere that trap heat, raising the surface temperature of astronomical bodies such as Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.27 [0.2–0.4] °C per decade over 2015–2024. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 53.6±5.2 Gt CO2e yr−1 over the last decade (2014–2023), as well as reductions in the strength of aerosol cooling.

The five most abundant greenhouse gases in Earth's atmosphere, listed in decreasing order of average global mole fraction, are: water vapor, carbon dioxide, methane, nitrous oxide, ozone. Other greenhouse gases of concern include chlorofluorocarbons (CFCs and HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons, SF
6
, and NF
3
. Water vapor causes about half of the greenhouse effect, acting in response to other gases as a climate change feedback.

↑ Return to Menu

Astronomical bodies in the context of History of timekeeping devices

The history of timekeeping devices dates back to when ancient civilizations first observed astronomical bodies as they moved across the sky. Devices and methods for keeping time have gradually improved through a series of new inventions, starting with measuring time by continuous processes, such as the flow of liquid in water clocks, to mechanical clocks, and eventually repetitive, oscillatory processes, such as the swing of pendulums. Oscillating timekeepers are used in modern timepieces. Sundials and water clocks were first used in ancient Egypt c. 1200 BC and later by the Babylonians, the Greeks and the Chinese. Incense clocks were being used in China by the 6th century. In the medieval period, Islamic water clocks were unrivalled in their sophistication until the mid-14th century. The hourglass, invented in Europe, was one of the few reliable methods of measuring time at sea.

In medieval Europe, purely mechanical clocks were developed after the invention of the bell-striking alarm, used to signal the correct time to ring monastic bells. The weight-driven mechanical clock controlled by the action of a verge and foliot was a synthesis of earlier ideas from European and Islamic science. Mechanical clocks were a major breakthrough, one notably designed and built by Henry de Vick in c. 1360, which established basic clock design for the next 300 years. Minor developments were added, such as the invention of the mainspring in the early 15th century, which allowed small clocks to be built for the first time.

↑ Return to Menu

Astronomical bodies in the context of Ocean world

An ocean world, ocean planet or water world is a type of planet or natural satellite that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava (the case of Io), ammonia (in a eutectic mixture with water, as is likely the case of Titan's inner ocean) or hydrocarbons (like on Titan's surface, which could be the most abundant kind of exosea). The study of extraterrestrial oceans is referred to as planetary oceanography.

Earth is the only astronomical object known to presently have bodies of liquid water on its surface, although subsurface oceans are suspected to exist on Jupiter's moons Europa and Ganymede and Saturn's moons Enceladus and Titan. Several exoplanets have been found with the right conditions to support liquid water. There are also considerable amounts of subsurface water found on Earth, mostly in the form of aquifers. For exoplanets, current technology cannot directly observe liquid surface water, so atmospheric water vapor may be used as a proxy. The characteristics of ocean worlds provide clues to their history and the formation and evolution of the Solar System as a whole. Of additional interest is their potential to originate and host life.

↑ Return to Menu

Astronomical bodies in the context of Poles of astronomical bodies

The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.

↑ Return to Menu

Astronomical bodies in the context of Space colonization

Space colonization (or extraterrestrial colonization) is the settlement or colonization of outer space and astronomical bodies. The concept in its broad sense has been applied to any permanent human presence in space, such as a space habitat or other extraterrestrial settlements. It may involve a process of occupation or control for exploitation, such as extraterrestrial mining.

Making territorial claims in space is prohibited by international space law, defining space as a common heritage. International space law has had the goal to prevent colonial claims and militarization of space, and has advocated the installation of international regimes to regulate access to and sharing of space, particularly for specific locations such as the limited space of geostationary orbit or the Moon. To date, no permanent space settlement other than temporary space habitats have been established, nor has any extraterrestrial territory or land been internationally claimed. Currently there are also no plans for building a space colony by any government. However, many proposals, speculations, and designs, particularly for extraterrestrial settlements have been made through the years, and a considerable number of space colonization advocates and groups are active. Currently, the dominant private launch provider SpaceX, has been the most prominent organization planning space colonization on Mars, though having not reached a development stage beyond launch and landing systems.

↑ Return to Menu