Fossil fuels in the context of Microplankton


Fossil fuels in the context of Microplankton

Fossil fuels Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Fossil fuels in the context of "Microplankton"


⭐ Core Definition: Fossil fuels

A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geological formations. Reservoirs of such compound mixtures, such as coal, petroleum and natural gas, can be extracted and burnt as fuel for human consumption to provide energy for direct use (such as for cooking, heating or lighting), to power heat engines (such as steam or internal combustion engines) that can propel vehicles, or to generate electricity via steam turbine generators. Some fossil fuels are further refined into derivatives such as kerosene, gasoline and diesel, or converted into petrochemicals such as polyolefins (plastics), aromatics and synthetic resins.

The origin of fossil fuels is the anaerobic decomposition of buried dead organisms. The conversion from these organic materials to high-carbon fossil fuels is typically the result of a geological process of millions of years. Due to the length of time it takes for them to form, fossil fuels are considered non-renewable resources.

↓ Menu
HINT:

In this Dossier

Fossil fuels in the context of Eco-economic decoupling

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.

Studies have found that absolute decoupling was rare and that only a few industrialised countries had weak decoupling of GDP from "consumption-based" CO2 production. No evidence was found of national or international economy-wide decoupling in a study in 2020. In cases where evidence of decoupling exists, one proposed explanation is the transition to a service economy. The environmental Kuznets curve is a proposed model for eco-economic decoupling.

View the full Wikipedia page for Eco-economic decoupling
↑ Return to Menu

Fossil fuels in the context of Biogeochemical cycle

A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles (is turned over or moves through) the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.

For example, in the carbon cycle, atmospheric carbon dioxide is absorbed by plants through photosynthesis, which converts it into organic compounds that are used by organisms for energy and growth. Carbon is then released back into the atmosphere through respiration and decomposition. Additionally, carbon is stored in fossil fuels and is released into the atmosphere through human activities such as burning fossil fuels. In the nitrogen cycle, atmospheric nitrogen gas is converted by plants into usable forms such as ammonia and nitrates through the process of nitrogen fixation. These compounds can be used by other organisms, and nitrogen is returned to the atmosphere through denitrification and other processes. In the water cycle, the universal solvent water evaporates from land and oceans to form clouds in the atmosphere, and then precipitates back to different parts of the planet. Precipitation can seep into the ground and become part of groundwater systems used by plants and other organisms, or can runoff the surface to form lakes and rivers. Subterranean water can then seep into the ocean along with river discharges, rich with dissolved and particulate organic matter and other nutrients.

View the full Wikipedia page for Biogeochemical cycle
↑ Return to Menu

Fossil fuels in the context of Transport industry

The transport/transportation and logistics industry is a category of companies that provide services to transport people or goods. The Global Industry Classification Standard (GICS) lists transport below the industrials sector. The sector consists of several industries including logistics and air freight or airlines, marine, road and rail, and their respective infrastructures. Entire stock market indexes focus on the sector, like the Dow Jones Transportation Index (DJTA).

In the EU, the transport industry directly employs around 10 million people and accounts for about 5% of the gross domestic product (GDP). Logistics account for 10–15% of the cost of a finished product for European companies. On average 13.2% of every household's budget is spent on transport, which still depends heavily on fossil fuels and represents an important source of CO2 emissions. Emissions from road freight transport have risen by more than 20% since 1995, counterweighting the increased energy efficiency of vehicles.

View the full Wikipedia page for Transport industry
↑ Return to Menu

Fossil fuels in the context of Hydrocarbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases (such as methane and propane), liquids (such as hexane and benzene), low melting solids (such as paraffin wax and naphthalene) or polymers (such as polyethylene and polystyrene).

In the fossil fuel industries, hydrocarbon refers to naturally occurring petroleum, natural gas and coal, or their hydrocarbon derivatives and purified forms. Combustion of hydrocarbons is the main source of the world's energy. Petroleum is the dominant raw-material source for organic commodity chemicals such as solvents and polymers. Most anthropogenic (human-generated) emissions of greenhouse gases are either carbon dioxide released by the burning of fossil fuels, or methane released from the handling of natural gas or from agriculture.

View the full Wikipedia page for Hydrocarbon
↑ Return to Menu

Fossil fuels in the context of Industrial society

In sociology, an industrial society is a society driven by the use of technology and machinery to enable mass production, supporting a large population with a high capacity for division of labour. Such a structure developed in the Western world in the period of time following the Industrial Revolution, and replaced the agrarian societies of the pre-modern, pre-industrial age. Industrial societies are generally mass societies, and may be succeeded by an information society. They are often contrasted with traditional societies.

Industrial societies use external energy sources, such as fossil fuels, to increase the rate and scale of production. The production of food is shifted to large commercial farms where the products of industry, such as combine harvesters and fossil fuel–based fertilizers, are used to decrease required human labor while increasing production. No longer needed for the production of food, excess labor is moved into these factories where mechanization is utilized to further increase efficiency. As populations grow, and mechanization is further refined, often to the level of automation, many workers shift to expanding service industries.

View the full Wikipedia page for Industrial society
↑ Return to Menu

Fossil fuels in the context of Electric locomotive

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor. Locomotives with on-board fuelled prime movers, such as diesel engines or gas turbines, are classed as diesel–electric or gas turbine–electric and not as electric locomotives, because the electric generator/motor combination serves only as a power transmission system.

Electric locomotives benefit from the high efficiency of electric motors, often above 90% (not including the inefficiency of generating the electricity). Additional efficiency can be gained from regenerative braking, which allows kinetic energy to be recovered during braking to put power back on the line. Newer electric locomotives use AC motor-inverter drive systems that provide for regenerative braking. Electric locomotives are quiet compared to diesel locomotives since there is no engine and exhaust noise and less mechanical noise. The lack of reciprocating parts means electric locomotives are easier on the track, reducing track maintenance. Power plant capacity is far greater than any individual locomotive uses, so electric locomotives can have a higher power output than diesel locomotives and they can produce even higher short-term surge power for fast acceleration. Electric locomotives are ideal for commuter rail service with frequent stops. Electric locomotives are used on freight routes with consistently high traffic volumes, or in areas with advanced rail networks. Power plants, even if they burn fossil fuels, are far cleaner than mobile sources such as locomotive engines. The power can also come from low-carbon or renewable sources, including geothermal power, hydroelectric power, biomass, solar power, nuclear power and wind turbines. Electric locomotives usually cost 20% less than diesel locomotives, their maintenance costs are 25–35% lower, and cost up to 50% less to run.

View the full Wikipedia page for Electric locomotive
↑ Return to Menu

Fossil fuels in the context of Nationalized

Nationalization (nationalisation in British English) is the process of transforming privately owned assets into public assets by bringing them under the public ownership of a national government or state. Nationalization contrasts with privatization and with demutualization. When previously nationalized assets are privatized and subsequently returned to public ownership at a later stage, they are said to have undergone renationalization (or deprivatization). Industries often subject to nationalization include telephones, electric power, fossil fuels, iron ore, railways, airlines, media, postal services, banks, and water (sometimes called the commanding heights of the economy), and in many jurisdictions such entities have no history of private ownership.

Nationalization may occur with or without financial compensation to the former owners. Nationalization is distinguished from property redistribution in that the government retains control of nationalized property. Some nationalizations take place when a government seizes property acquired illegally. For example, in 1945 the French government seized the car-maker Renault because its owners had collaborated with the 1940–1944 Nazi occupiers of France.

View the full Wikipedia page for Nationalized
↑ Return to Menu

Fossil fuels in the context of Top contributors to greenhouse gas emissions

This article is a list of locations and entities by greenhouse gas emissions, i.e. the greenhouse gas emissions from companies, activities, and countries on Earth which cause climate change. The relevant greenhouse gases are mainly: carbon dioxide, methane, nitrous oxide and the fluorinated gases bromofluorocarbon, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, nitrogen trifluoride, perfluorocarbons and sulfur hexafluoride.

The extraction and subsequent use of fossil fuels coal, oil and natural gas, as a fuel source, is the largest contributor to global warming.

View the full Wikipedia page for Top contributors to greenhouse gas emissions
↑ Return to Menu

Fossil fuels in the context of Ecovillages

An ecovillage is a traditional or intentional community that aims to become more socially, culturally, economically and/or environmentally sustainable. An ecovillage strives to have the least possible negative impact on the natural environment through the intentional physical design and behavioural choices of its inhabitants. It is consciously designed through locally owned, participatory processes to regenerate and restore its social and natural environments. Most range from a population of 50 to 250 individuals, although some are smaller, and traditional ecovillages are often much larger. Larger ecovillages often exist as networks of smaller sub-communities. Some ecovillages have grown through like-minded individuals, families, or other small groups—who are not members, at least at the outset—settling on the ecovillage's periphery and participating de facto in the community. There are currently more than 10,000 ecovillages around the world.

Ecovillagers are united by shared ecological, social-economic and cultural-spiritual values. Concretely, ecovillagers seek alternatives to ecologically destructive electrical, water, transportation, and waste-treatment systems, as well as the larger social systems that mirror and support them. Many see the breakdown of traditional forms of community, wasteful consumerist lifestyles, the destruction of natural habitat, urban sprawl, factory farming, and over-reliance on fossil fuels as trends that must be changed to avert ecological disaster and create richer and more fulfilling ways of life.

View the full Wikipedia page for Ecovillages
↑ Return to Menu

Fossil fuels in the context of Smokestack

A chimney is an architectural ventilation structure made of masonry, clay or metal that isolates hot toxic exhaust gases or smoke produced by a boiler, stove, furnace, incinerator, or fireplace from human living areas. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney effect. The space inside a chimney is called the flue. Chimneys are adjacent to large industrial refineries, fossil fuel combustion facilities or part of buildings, steam locomotives and ships.

In the United States, the term smokestack industry refers to the environmental impacts of burning fossil fuels by industrial society, including the electric industry during its earliest history. The term smokestack (colloquially, stack) is also used when referring to locomotive chimneys or ship chimneys, and the term funnel can also be used.

View the full Wikipedia page for Smokestack
↑ Return to Menu

Fossil fuels in the context of Liquid fuels

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid.Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel (for automotive uses), ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.

Liquid fuels are contrasted with solid fuels and gaseous fuels.

View the full Wikipedia page for Liquid fuels
↑ Return to Menu

Fossil fuels in the context of Oil drilling

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve and if necessary equipped with extraction devices such as pumpjacks. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in difficult-to-access locations, e.g., offshore. The process of modern drilling for wells first started in the 19th century but was made more efficient with advances to oil drilling rigs and technology during the 20th century.

Wells are frequently sold or exchanged between different oil and gas companies as an asset – in large part because during a drop in the price of oil and gas, a well may be unproductive, but if prices rise, even low-production wells may be economically valuable. Moreover, new methods, such as hydraulic fracturing (a process of injecting gas or liquid to force more oil or natural gas production) have made some wells viable. However, peak oil and climate policy surrounding fossil fuels have made fewer of these wells and costly techniques viable.

View the full Wikipedia page for Oil drilling
↑ Return to Menu

Fossil fuels in the context of Climate policies

The politics of climate change results from different perspectives on how to respond to climate change. Global warming is driven largely by the emissions of greenhouse gases due to human activity, especially the burning of fossil fuels, certain industries like cement and steel production, and land use for agriculture and forestry. Since the Industrial Revolution, fossil fuels have provided the main source of energy for economic and technological development. The centrality of fossil fuels and other carbon-intensive industries has resulted in much resistance to climate policy, despite widespread scientific consensus that such policy is necessary.

Climate change first emerged as a political issue in the 1970s. Efforts to mitigate climate change have been prominent on the international political agenda since the 1990s, and are also increasingly addressed at national and local level. Climate change is a complex global problem. Greenhouse gas (GHG) emissions contribute to global warming across the world, regardless of where the emissions originate. Yet the impact of global warming varies widely depending on how vulnerable a location or economy is to its effects. Global warming is on the whole having negative impact, which is predicted to worsen as heating increases. Ability to benefit from both fossil fuels and renewable energy vary substantially from nation to nation.

View the full Wikipedia page for Climate policies
↑ Return to Menu

Fossil fuels in the context of Energy transition

An energy transition (or energy system transformation) is a major structural change to energy supply and consumption in an energy system. Currently, a transition to sustainable energy is underway to limit climate change. Most of the sustainable energy is renewable energy. Therefore, another term for energy transition is renewable energy transition. The current transition aims to reduce greenhouse gas emissions from energy quickly and sustainably, mostly by phasing-down fossil fuels and changing as many processes as possible to operate on low carbon electricity. A previous energy transition perhaps took place during the Industrial Revolution from 1760 onwards, from wood and other biomass to coal, followed by oil and later natural gas.

Over three-quarters of the world's energy needs are met by burning fossil fuels, but this usage emits greenhouse gases. Energy production and consumption are responsible for most human-caused greenhouse gas emissions. To meet the goals of the 2015 Paris Agreement on climate change, emissions must be reduced as soon as possible and reach net-zero by mid-century. Since the late 2010s, the renewable energy transition has also been driven by the rapidly falling cost of both solar and wind power. After 2024, clean energy is cheaper than ever. Global solar module prices fell 35 percent to less than 9 cents/kWh. EV batteries saw their best price decline in seven years. Another benefit of the energy transition is its potential to reduce the health and environmental impacts of the energy industry.

View the full Wikipedia page for Energy transition
↑ Return to Menu

Fossil fuels in the context of Organosulfur

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two (cysteine and methionine) are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Sulfur shares the chalcogen group with oxygen, selenium, and tellurium, and it is expected that organosulfur compounds have similarities with carbon–oxygen, carbon–selenium, and carbon–tellurium compounds.

View the full Wikipedia page for Organosulfur
↑ Return to Menu

Fossil fuels in the context of Renewable fuel

Renewable fuels are fuels produced from renewable resources. Examples include: biofuels (e.g. Vegetable oil used as fuel, ethanol, methanol from clean energy and carbon dioxide or biomass, and biodiesel), Hydrogen fuel (when produced with renewable processes), and fully synthetic fuel (also known as electrofuel) produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

View the full Wikipedia page for Renewable fuel
↑ Return to Menu