Lithosphere in the context of "Biogeochemical cycle"

⭐ In the context of biogeochemical cycles, the lithosphere is considered which of the following?

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lithosphere in the context of Climate

Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorological variables that are commonly measured are temperature, humidity, atmospheric pressure, wind, and precipitation. In a broader sense, climate is the state of the components of the climate system, including the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere and the interactions between them. The climate of a location is affected by its latitude, longitude, terrain, altitude, land use and nearby water bodies and their currents.

Climates can be classified according to the average and typical variables, most commonly temperature and precipitation. The most widely used classification scheme is the Kƶppen climate classification. The Thornthwaite system, in use since 1948, incorporates evapotranspiration along with temperature and precipitation information and is used in studying biological diversity and how climate change affects it. The major classifications in Thornthwaite's climate classification are microthermal, mesothermal, and megathermal. Finally, the Bergeron and Spatial Synoptic Classification systems focus on the origin of air masses that define the climate of a region.

↑ Return to Menu

Lithosphere in the context of Silurian-Devonian Terrestrial Revolution

The Silurian-Devonian Terrestrial Revolution, also known as the Devonian Plant Explosion (DePE) and the Devonian explosion, was a period of rapid colonization, diversification and radiation of land plants (particularly vascular plants) and fungi (especially dikaryans) on dry lands that occurred 428 to 359 million years ago (Mya) during the Silurian and Devonian periods, with the most critical phase occurring during the Late Silurian and Early Devonian.

This diversification of terrestrial photosynthetic florae had vast impacts on the biotic composition of the Earth's surface, especially upon the Earth's atmosphere by oxygenation and carbon fixation. Their roots also eroded into the rocks, creating a layer of water-holding and mineral/organic matter-rich soil on top of Earth's crust known as the pedosphere, and significantly altering the chemistry of Earth's lithosphere and hydrosphere. The floral activities following the Silurian-Devonian plant revolution also exerted significant influences on changes in the water cycle and global climate, as well as driving the biosphere by creating diverse layers of vegetations that provide both sustenance and refuge for both upland and wetland habitats, paving the way for all terrestrial and aquatic biomes that would follow.

↑ Return to Menu

Lithosphere in the context of Island arc

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

Island arcs can either be active or inactive based on their seismicity and presence of volcanoes. Active arcs are ridges of recent volcanoes with an associated deep seismic zone. They also possess a distinct curved form, a chain of active or recently extinct volcanoes, a deep-sea trench, and a large negative Bouguer anomaly on the convex side of the volcanic arc. The small positive gravity anomaly associated with volcanic arcs has been interpreted by many authors as due to the presence of dense volcanic rocks beneath the arc. Inactive arcs are a chain of islands which contains older volcanic and volcaniclastic rocks.

↑ Return to Menu

Lithosphere in the context of Izu–Bonin–Mariana Arc

The Izu–Bonin–Mariana (IBM) arc system is a tectonic plate convergent boundary in Micronesia. The IBM arc system extends over 2800Ā km south from Tokyo, Japan, to beyond Guam, and includes the Izu Islands, the Bonin Islands, and the Mariana Islands; much more of the IBM arc system is submerged below sealevel. The IBM arc system lies along the eastern margin of the Philippine Sea plate in the Western Pacific Ocean. It is the site of the deepest gash in Earth's solid surface, the Challenger Deep in the Mariana Trench.

The IBM arc system formed as a result of subduction of the western Pacific plate. The IBM arc system now subducts mid-Jurassic to Early Cretaceous lithosphere, with younger lithosphere in the north and older lithosphere in the south, including the oldest (~170 million years old, or Ma) oceanic crust. Subduction rates vary from ~2Ā cm (1 inch) per year in the south to 6Ā cm (~2.5 inches) in the north.

↑ Return to Menu

Lithosphere in the context of Holocene

The Holocene (/ˈhɒl.əsiːn, -oʊ-, ˈhoʊ.lə-, -loʊ-/) is the current geological epoch, beginning approximately 11,700 years ago. It follows the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene is an interglacial period within the ongoing glacial cycles of the Quaternary, and is equivalent to Marine Isotope Stage 1. The name "Holocene" comes from Ancient Greek ὅλος (hólos), meaning "whole", and ĪŗĪ±Ī¹Ī½ĻŒĻ‚ (kainós), meaning "new, recent", referring that this epoch is "entirely new".

The Holocene correlates with the last maximum axial tilt towards the Sun of the Earth's obliquity. The Holocene corresponds with the rapid proliferation, growth, and impacts of the human species worldwide, including all of its written history, technological revolutions, development of major civilizations, and overall significant transition towards urban living in the present. The human impact on modern-era Earth and its ecosystems may be considered of global significance for the future evolution of living species, including approximately synchronous lithospheric evidence, or more recently hydrospheric and atmospheric evidence of the human impact.

↑ Return to Menu

Lithosphere in the context of Earth's energy budget

Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also takes into account how energy moves through the climate system. The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

Earth's energy budget depends on many factors, such as atmospheric aerosols, greenhouse gases, surface albedo, clouds, and land use patterns. When the incoming and outgoing energy fluxes are in balance, Earth is in radiative equilibrium and the climate system will be relatively stable. Global warming occurs when earth receives more energy than it gives back to space, and global cooling takes place when the outgoing energy is greater.

↑ Return to Menu

Lithosphere in the context of Oceanic crust

Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust lies above the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere.

Oceanic crust is primarily composed of mafic rocks, or sima, which is rich in iron and magnesium. It is thinner than continental crust, or sial, generally less than 10 kilometers thick; however, it is denser, having a mean density of about 3.0 grams per cubic centimeter as opposed to continental crust which has a density of about 2.7 grams per cubic centimeter.

↑ Return to Menu

Lithosphere in the context of Plate tectonics

↑ Return to Menu

Lithosphere in the context of List of tectonic plates

This is a list of tectonic plates on Earth's surface. Tectonic plates are pieces of Earth's crust and uppermost mantle, together referred to as the lithosphere. The plates are around 100Ā km (62Ā mi) thick and consist of two principal types of material: oceanic crust (also called sima from silicon and magnesium) and continental crust (sial from silicon and aluminium). The composition of the two types of crust differs markedly, with mafic basaltic rocks dominating oceanic crust, while continental crust consists principally of lower-density felsic granitic rocks.

↑ Return to Menu

Lithosphere in the context of Earth's crust

Earth's crust is its thick outer shell of rock, comprising less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper part of the mantle. The lithosphere is broken into tectonic plates whose motion allows heat to escape the interior of Earth into space.

The crust lies on top of the mantle, a configuration that is stable because the upper mantle is made of peridotite and is therefore significantly denser than the crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity.

↑ Return to Menu