Hydrofluorocarbon in the context of "Top contributors to greenhouse gas emissions"

Play Trivia Questions online!

or

Skip to study material about Hydrofluorocarbon in the context of "Top contributors to greenhouse gas emissions"




⭐ Core Definition: Hydrofluorocarbon

Hydrofluorocarbons (HFCs) are synthetic organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure. They are frequently used in air conditioning and as refrigerants; R-134a (1,1,1,2-tetrafluoroethane) is one of the most commonly used HFC refrigerants. In order to aid the recovery of the stratospheric ozone layer, HFCs were adopted to replace the more potent chlorofluorocarbons (CFCs) such as R-12, which were phased out from use by the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs) such as R-21 which are presently being phased out. HFCs are also used in insulating foams, aerosol propellants, as solvents and for fire protection.

HFCs may not harm the ozone layer as much as the compounds they replace, but they still contribute to global warming – with some like trifluoromethane (CHF3 or R-23) having 11,700 times the warming potential of carbon dioxide. HFC atmospheric concentrations and contribution to anthropogenic greenhouse gas emissions are rapidly increasing – consumption rose from near zero in 1990 to 1.2 billion tons of carbon dioxide equivalent in 2010 – causing international concern about their radiative forcing.

↓ Menu

👉 Hydrofluorocarbon in the context of Top contributors to greenhouse gas emissions

This article is a list of locations and entities by greenhouse gas emissions, i.e. the greenhouse gas emissions from companies, activities, and countries on Earth which cause climate change. The relevant greenhouse gases are mainly: carbon dioxide, methane, nitrous oxide and the fluorinated gases bromofluorocarbon, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, nitrogen trifluoride, perfluorocarbons and sulfur hexafluoride.

The extraction and subsequent use of fossil fuels coal, oil and natural gas, as a fuel source, is the largest contributor to global warming.

↓ Explore More Topics
In this Dossier

Hydrofluorocarbon in the context of Chlorofluorocarbon

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F). They are produced as volatile derivatives of methane, ethane, and propane.

The most common example of a CFC is dichlorodifluoromethane (R-12). R-12, also commonly called Freon, is used as a refrigerant. Many CFCs have been widely used as refrigerants, propellants (in aerosol applications), gaseous fire suppression systems, and solvents. As a result of CFCs contributing to ozone depletion in the upper atmosphere, the manufacture of such compounds has been phased out under the Montreal Protocol, and they are being replaced with other products such as hydrofluorocarbons (HFCs) and hydrofluoroolefins (HFOs) including R-410A, R-134a and R-1234yf.

↑ Return to Menu

Hydrofluorocarbon in the context of Freon

Freon (/ˈfrɒn/ FREE-on) is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol propellants. They include chlorofluorocarbons (CFCs) and hydrofluorocarbons (HFCs), both of which cause ozone depletion (although the latter much less so) and contribute to global warming. "Freon" is the brand name for the refrigerants R-12, R-13B1, R-22, R-410A, R-502, and R-503 manufactured by the Chemours Company. They emit a strong smell similar to acetone. Freon has been found to cause damage to human health when inhaled in large amounts. Studies have been conducted in the pursuit to find beneficial reuses for gases under the Freon umbrella as an alternative to disposal.

↑ Return to Menu

Hydrofluorocarbon in the context of Hydrofluoroolefin

Hydrofluoroolefins (HFOs) are unsaturated organic compounds composed of hydrogen, fluorine and carbon. These organofluorine compounds are of interest as refrigerants. Unlike traditional hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs), which are saturated, HFOs are olefins, otherwise known as alkenes.

HFO refrigerants are categorized as having zero ozone depletion potential (ODP) and low global warming potential (GWP) and so offer a more environmentally friendly alternative to CFC, HCFC, and HFC refrigerants. Compared to HCFCs and HFCs, HFOs have shorter tropospheric lifetimes due to the reactivity of the C=C bond with hydroxyl radicals and chlorine radicals. This quick reactivity prevents them from reaching the stratosphere and participating in the depletion of good ozone, leading to strong interest in the development and characterization of new HFO blends for use as refrigerants. Many refrigerants in the HFO class are inherently stable chemically and inert, non toxic, and non-flammable or mildly flammable. Many HFOs have the proper freezing and boiling points to be useful for refrigeration at common temperatures. They have also been adopted as blowing agents, i.e. in production of insulation foams, food industry, construction materials, and others. However, HFOs degrade to produce trifluoroacetic acid, a persistent toxic chemical which can lead to acidification of water bodies, and which can accumulate in wetlands, a sensitive ecosystem.

↑ Return to Menu

Hydrofluorocarbon in the context of R-134a

1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.

↑ Return to Menu