Fossil fuels in the context of "Ecovillages"

Play Trivia Questions online!

or

Skip to study material about Fossil fuels in the context of "Ecovillages"

Ad spacer

⭐ Core Definition: Fossil fuels

A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geological formations. Reservoirs of such compound mixtures, such as coal, petroleum and natural gas, can be extracted and burnt as fuel for human consumption to provide energy for direct use (such as for cooking, heating or lighting), to power heat engines (such as steam or internal combustion engines) that can propel vehicles, or to generate electricity via steam turbine generators. Some fossil fuels are further refined into derivatives such as kerosene, gasoline and diesel, or converted into petrochemicals such as polyolefins (plastics), aromatics and synthetic resins.

The origin of fossil fuels is the anaerobic decomposition of buried dead organisms. The conversion from these organic materials to high-carbon fossil fuels is typically the result of a geological process of millions of years. Due to the length of time it takes for them to form, fossil fuels are considered non-renewable resources.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Fossil fuels in the context of Ecovillages

An ecovillage is a traditional or intentional community that aims to become more socially, culturally, economically and/or environmentally sustainable. An ecovillage strives to have the least possible negative impact on the natural environment through the intentional physical design and behavioural choices of its inhabitants. It is consciously designed through locally owned, participatory processes to regenerate and restore its social and natural environments. Most range from a population of 50 to 250 individuals, although some are smaller, and traditional ecovillages are often much larger. Larger ecovillages often exist as networks of smaller sub-communities. Some ecovillages have grown through like-minded individuals, families, or other small groups—who are not members, at least at the outset—settling on the ecovillage's periphery and participating de facto in the community. There are currently more than 10,000 ecovillages around the world.

Ecovillagers are united by shared ecological, social-economic and cultural-spiritual values. Concretely, ecovillagers seek alternatives to ecologically destructive electrical, water, transportation, and waste-treatment systems, as well as the larger social systems that mirror and support them. Many see the breakdown of traditional forms of community, wasteful consumerist lifestyles, the destruction of natural habitat, urban sprawl, factory farming, and over-reliance on fossil fuels as trends that must be changed to avert ecological disaster and create richer and more fulfilling ways of life.

↓ Explore More Topics
In this Dossier

Fossil fuels in the context of Eco-economic decoupling

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.

Studies have found that absolute decoupling was rare and that only a few industrialised countries had weak decoupling of GDP from "consumption-based" CO2 production. No evidence was found of national or international economy-wide decoupling in a study in 2020. In cases where evidence of decoupling exists, one proposed explanation is the transition to a service economy. The environmental Kuznets curve is a proposed model for eco-economic decoupling.

↑ Return to Menu

Fossil fuels in the context of Biogeochemical cycle

A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles (is turned over or moves through) the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.

For example, in the carbon cycle, atmospheric carbon dioxide is absorbed by plants through photosynthesis, which converts it into organic compounds that are used by organisms for energy and growth. Carbon is then released back into the atmosphere through respiration and decomposition. Additionally, carbon is stored in fossil fuels and is released into the atmosphere through human activities such as burning fossil fuels. In the nitrogen cycle, atmospheric nitrogen gas is converted by plants into usable forms such as ammonia and nitrates through the process of nitrogen fixation. These compounds can be used by other organisms, and nitrogen is returned to the atmosphere through denitrification and other processes. In the water cycle, the universal solvent water evaporates from land and oceans to form clouds in the atmosphere, and then precipitates back to different parts of the planet. Precipitation can seep into the ground and become part of groundwater systems used by plants and other organisms, or can runoff the surface to form lakes and rivers. Subterranean water can then seep into the ocean along with river discharges, rich with dissolved and particulate organic matter and other nutrients.

↑ Return to Menu

Fossil fuels in the context of Transport industry

The transport/transportation and logistics industry is a category of companies that provide services to transport people or goods. The Global Industry Classification Standard (GICS) lists transport below the industrials sector. The sector consists of several industries including logistics and air freight or airlines, marine, road and rail, and their respective infrastructures. Entire stock market indexes focus on the sector, like the Dow Jones Transportation Index (DJTA).

In the EU, the transport industry directly employs around 10 million people and accounts for about 5% of the gross domestic product (GDP). Logistics account for 10–15% of the cost of a finished product for European companies. On average 13.2% of every household's budget is spent on transport, which still depends heavily on fossil fuels and represents an important source of CO2 emissions. Emissions from road freight transport have risen by more than 20% since 1995, counterweighting the increased energy efficiency of vehicles.

↑ Return to Menu

Fossil fuels in the context of Hydrocarbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases (such as methane and propane), liquids (such as hexane and benzene), low melting solids (such as paraffin wax and naphthalene) or polymers (such as polyethylene and polystyrene).

In the fossil fuel industries, hydrocarbon refers to naturally occurring petroleum, natural gas and coal, or their hydrocarbon derivatives and purified forms. Combustion of hydrocarbons is the main source of the world's energy. Petroleum is the dominant raw-material source for organic commodity chemicals such as solvents and polymers. Most anthropogenic (human-generated) emissions of greenhouse gases are either carbon dioxide released by the burning of fossil fuels, or methane released from the handling of natural gas or from agriculture.

↑ Return to Menu

Fossil fuels in the context of Industrial society

In sociology, an industrial society is a society driven by the use of technology and machinery to enable mass production, supporting a large population with a high capacity for division of labour. Such a structure developed in the Western world in the period of time following the Industrial Revolution, and replaced the agrarian societies of the pre-modern, pre-industrial age. Industrial societies are generally mass societies, and may be succeeded by an information society. They are often contrasted with traditional societies.

Industrial societies use external energy sources, such as fossil fuels, to increase the rate and scale of production. The production of food is shifted to large commercial farms where the products of industry, such as combine harvesters and fossil fuel–based fertilizers, are used to decrease required human labor while increasing production. No longer needed for the production of food, excess labor is moved into these factories where mechanization is utilized to further increase efficiency. As populations grow, and mechanization is further refined, often to the level of automation, many workers shift to expanding service industries.

↑ Return to Menu

Fossil fuels in the context of Electric locomotive

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor. Locomotives with on-board fuelled prime movers, such as diesel engines or gas turbines, are classed as diesel–electric or gas turbine–electric and not as electric locomotives, because the electric generator/motor combination serves only as a power transmission system.

Electric locomotives benefit from the high efficiency of electric motors, often above 90% (not including the inefficiency of generating the electricity). Additional efficiency can be gained from regenerative braking, which allows kinetic energy to be recovered during braking to put power back on the line. Newer electric locomotives use AC motor-inverter drive systems that provide for regenerative braking. Electric locomotives are quiet compared to diesel locomotives since there is no engine and exhaust noise and less mechanical noise. The lack of reciprocating parts means electric locomotives are easier on the track, reducing track maintenance. Power plant capacity is far greater than any individual locomotive uses, so electric locomotives can have a higher power output than diesel locomotives and they can produce even higher short-term surge power for fast acceleration. Electric locomotives are ideal for commuter rail service with frequent stops. Electric locomotives are used on freight routes with consistently high traffic volumes, or in areas with advanced rail networks. Power plants, even if they burn fossil fuels, are far cleaner than mobile sources such as locomotive engines. The power can also come from low-carbon or renewable sources, including geothermal power, hydroelectric power, biomass, solar power, nuclear power and wind turbines. Electric locomotives usually cost 20% less than diesel locomotives, their maintenance costs are 25–35% lower, and cost up to 50% less to run.

↑ Return to Menu

Fossil fuels in the context of Nationalized

Nationalization (nationalisation in British English) is the process of transforming privately owned assets into public assets by bringing them under the public ownership of a national government or state. Nationalization contrasts with privatization and with demutualization. When previously nationalized assets are privatized and subsequently returned to public ownership at a later stage, they are said to have undergone renationalization (or deprivatization). Industries often subject to nationalization include telephones, electric power, fossil fuels, iron ore, railways, airlines, media, postal services, banks, and water (sometimes called the commanding heights of the economy), and in many jurisdictions such entities have no history of private ownership.

Nationalization may occur with or without financial compensation to the former owners. Nationalization is distinguished from property redistribution in that the government retains control of nationalized property. Some nationalizations take place when a government seizes property acquired illegally. For example, in 1945 the French government seized the car-maker Renault because its owners had collaborated with the 1940–1944 Nazi occupiers of France.

↑ Return to Menu

Fossil fuels in the context of Top contributors to greenhouse gas emissions

This article is a list of locations and entities by greenhouse gas emissions, i.e. the greenhouse gas emissions from companies, activities, and countries on Earth which cause climate change. The relevant greenhouse gases are mainly: carbon dioxide, methane, nitrous oxide and the fluorinated gases bromofluorocarbon, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, nitrogen trifluoride, perfluorocarbons and sulfur hexafluoride.

The extraction and subsequent use of fossil fuels coal, oil and natural gas, as a fuel source, is the largest contributor to global warming.

↑ Return to Menu