Expression (computer science) in the context of Statement (computer science)


Expression (computer science) in the context of Statement (computer science)

Expression (computer science) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Expression (computer science) in the context of "Statement (computer science)"


⭐ Core Definition: Expression (computer science)

In computer science, an expression is a syntactic notation in a programming language that may be evaluated to determine its value of a specific semantic type. It is a combination of one or more numbers, constants, variables, functions, and operators that the programming language interprets (according to its particular rules of precedence and of association) and computes to produce ("to return", in a stateful environment) another value.In simple settings, the resulting value is usually one of various primitive types, such as string, boolean, or numerical (such as integer, floating-point, or complex).

Expressions are often contrasted with statementsβ€”syntactic entities that have no value (an instruction).

↓ Menu
HINT:

πŸ‘‰ Expression (computer science) in the context of Statement (computer science)

In computer programming, a statement is a syntactic unit of an imperative programming language that expresses some action to be carried out. A program written in such a language is formed by a sequence of one or more statements. A statement may have internal components (e.g. expressions).

Many programming languages (e.g. Ada, Algol 60, C, Java, Pascal) make a distinction between statements and definitions/declarations. A definition or declaration specifies the data on which a program is to operate, while a statement specifies the actions to be taken with that data.

↓ Explore More Topics
In this Dossier

Expression (computer science) in the context of Register allocation

In compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers.

Register allocation can happen over a basic block (local register allocation), over a whole function/procedure (global register allocation), or across function boundaries traversed via call-graph (interprocedural register allocation). When done per function/procedure the calling convention may require insertion of save/restore around each call-site.

View the full Wikipedia page for Register allocation
↑ Return to Menu

Expression (computer science) in the context of Conditional (computer programming)

In computer programming, a conditional statement directs program control flow based on the value of a condition; a Boolean expression. A conditional expression evaluates to a value without the side-effect of changing control flow.

Many programming languages (such as C) have distinct conditional statements and expressions. In pure functional programming, a conditional expression does not have side-effects, many functional programming languages with conditional expressions (such as Lisp) support side-effects.

View the full Wikipedia page for Conditional (computer programming)
↑ Return to Menu

Expression (computer science) in the context of Functional programming

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner.

View the full Wikipedia page for Functional programming
↑ Return to Menu

Expression (computer science) in the context of Type systems

A programming language consists of a system of allowed sequences of symbols (constructs) together with rules that define how each construct is interpreted. For example, a language might allow expressions representing various types of data, expressions that provide structuring rules for data, expressions representing various operations on data, and constructs that provide sequencing rules for the order in which to perform operations.

A simple type system for a programming language is a set of rules that associates a data type (for example, integer, floating point, string) with each term (data-valued expression) in a computer program. In more ambitious type systems, a variety of constructs, such as variables, expressions, functions, and modules, may be assigned types.

View the full Wikipedia page for Type systems
↑ Return to Menu

Expression (computer science) in the context of Data type

In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. A data type specification in a program constrains the possible values that an expression, such as a variable or a function call, might take. On literal data, it tells the compiler or interpreter how the programmer intends to use the data. Most programming languages support basic data types of integer numbers (of varying sizes), floating-point numbers (which approximate real numbers), characters and Booleans.

View the full Wikipedia page for Data type
↑ Return to Menu

Expression (computer science) in the context of Name binding

In programming languages, name binding is the association of entities (data and/or code) with identifiers. An identifier bound to an object is said to reference that object. Machine languages have no built-in notion of identifiers, but name-object bindings as a service and notation for the programmer is implemented by programming languages. Binding is intimately connected with scoping, as scope determines which names bind to which objects – at which locations in the program code (lexically) and in which one of the possible execution paths (temporally).

Use of an identifier id in a context that establishes a binding for id is called a binding (or defining) occurrence. In all other occurrences (e.g., in expressions, assignments, and subprogram calls), an identifier stands for what it is bound to; such occurrences are called applied occurrences.

View the full Wikipedia page for Name binding
↑ Return to Menu

Expression (computer science) in the context of Sizeof

sizeof is a unary operator in the C and C++ programming languages that evaluates to the storage size of an expression or a data type, measured in units sized as char. Consequently, the expression sizeof(char) evaluates to 1. The number of bits of type char is specified by the preprocessor macro CHAR_BIT, defined in the standard include file <limits.h>. On most modern computing platforms this is eight bits. The result of sizeof is an unsigned integer that is usually typed as size_t.

The operator accepts a single operand which is either a data type expressed as a cast – the name of a data type enclosed in parentheses – or a non-type expression for which parentheses are not required.

View the full Wikipedia page for Sizeof
↑ Return to Menu

Expression (computer science) in the context of Side effect (computer science)

In computer science, an operation or expression is said to have a side effect if it has any observable effect other than its primary effect of reading the value of its arguments and returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, a static local variable or a mutable argument passed by reference; performing I/O; or calling other functions with side-effects. In the presence of side effects, a program's behaviour may depend on history; that is, the order of evaluation matters. Understanding and debugging a function with side effects requires knowledge about the context and its possible histories.Side effects play an important role in the design and analysis of programming languages. The degree to which side effects are used depends on the programming paradigm. For example, imperative programming is commonly used to produce side effects, to update a system's state. By contrast, declarative programming is commonly used to report on the state of system, without side effects.

Functional programming aims to minimize or eliminate side effects. The lack of side effects makes it easier to do formal verification of a program. The functional language Haskell eliminates side effects such as I/O and other stateful computations by replacing them with monadic actions. Functional languages such as Standard ML, Scheme and Scala do not restrict side effects, but it is customary for programmers to avoid them.

View the full Wikipedia page for Side effect (computer science)
↑ Return to Menu

Expression (computer science) in the context of Denotational semantics

In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called denotations) that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics.

Broadly speaking, denotational semantics is concerned with finding mathematical objects called domains that represent what programs do. For example, programs (or program phrases) might be represented by partial functions or by games between the environment and the system.

View the full Wikipedia page for Denotational semantics
↑ Return to Menu

Expression (computer science) in the context of Language construct

In computer programming, a language construct is a syntactically allowable part of a program that may be formed from one or more lexical tokens in accordance with the rules of the programming language, as defined by in the ISO/IEC 2382 standard (ISO/IEC JTC 1).A term is defined as a "linguistic construct in a conceptual schema language that refers to an entity".

While the terms "language construct" and "control structure" are often used synonymously, there are additional types of logical constructs within a computer program, including variables, expressions, functions, or modules.

View the full Wikipedia page for Language construct
↑ Return to Menu

Expression (computer science) in the context of Functional programming language

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In functional programming, functions are treated as first-class entities, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner.

View the full Wikipedia page for Functional programming language
↑ Return to Menu