Ester in the context of Phosphate group


Ester in the context of Phosphate group

Ester Study page number 1 of 6

Play TriviaQuestions Online!

or

Skip to study material about Ester in the context of "Phosphate group"


HINT:

In this Dossier

Ester in the context of Triglyceride

A triglyceride (from tri- and glyceride; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids.Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat.They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver and are a major component of human skin oils.

Many types of triglycerides exist. One specific classification focuses on saturated and unsaturated types. Saturated fats have no C=C groups; unsaturated fats feature one or more C=C groups. Unsaturated fats tend to have a lower melting point than saturated analogues; as a result, they are often liquid at room temperature.

View the full Wikipedia page for Triglyceride
↑ Return to Menu

Ester in the context of Cellulose acetate

In biochemistry, cellulose acetate refers to any acetate ester of cellulose, usually cellulose diacetate. It was first prepared in 1865. A bioplastic, cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate film replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.

Water-soluble cellulose acetate (WSCA) has been used as a dietary fiber (prebiotic), in relation with weight loss and Akkermansia muciniphila.

View the full Wikipedia page for Cellulose acetate
↑ Return to Menu

Ester in the context of Polyester

Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include some naturally occurring chemicals, such as those found in plants and insects. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Polyester fibers are sometimes spun together with natural fibers to produce a cloth with blended properties. Cotton-polyester blends can be strong, wrinkle- and tear-resistant, and reduce shrinking. Synthetic fibers using polyester have high water, wind, and environmental resistance compared to plant-derived fibers. They are less fire-resistant and can melt when ignited.

View the full Wikipedia page for Polyester
↑ Return to Menu

Ester in the context of Organophosphate

In organic chemistry, organophosphates (also known as phosphate esters, or OPEs) are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid. Organophosphates are best known for their use as pesticides.

Like most functional groups, organophosphates occur in a diverse range of forms, with important examples including key biomolecules such as DNA, RNA and ATP, as well as many insecticides, herbicides, nerve agents and flame retardants. OPEs have been widely used in various products as flame retardants, plasticizers, and performance additives to engine oil. The low cost of production and compatibility to diverse polymers made OPEs to be widely used in industry including textile, furniture, electronics as plasticizers and flame retardants. These compounds are added to the final product physically rather than by chemical bond. Due to this, OPEs leak into the environment more readily through volatilization, leaching, and abrasion. OPEs have been detected in diverse environmental compartments such as air, dust, water, sediment, soil and biota samples at higher frequency and concentration.

View the full Wikipedia page for Organophosphate
↑ Return to Menu

Ester in the context of Phosphodiester bond

In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups (−OH) in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage C−O−PO2O−C. Discussion of phosphodiesters is dominated by their prevalence in DNA and RNA, but phosphodiesters occur in other biomolecules, e.g. acyl carrier proteins, phospholipids and the cyclic forms of GMP and AMP (cGMP and cAMP).

View the full Wikipedia page for Phosphodiester bond
↑ Return to Menu

Ester in the context of Beeswax

Beeswax (also known as cera alba) is a natural wax produced by honey bees of the genus Apis. The wax is formed into scales by eight wax-producing glands in the abdominal segments of worker bees, which discard it in or at the hive. The hive workers collect and use it to form cells for honey storage and larval and pupal protection within the beehive. Chemically, beeswax consists mainly of esters of fatty acids and various long-chain alcohols.

Beeswax has been used since prehistory as the first plastic, as a lubricant and waterproofing agent, in lost wax casting of metals and glass, as a polish for wood and leather, for making candles, as an ingredient in cosmetics and as an artistic medium in encaustic painting.

View the full Wikipedia page for Beeswax
↑ Return to Menu

Ester in the context of Ether lipid

In biochemistry, an ether lipid refers to any lipid in which the lipid "tail" group is attached to the glycerol backbone via an ether bond at any position. In contrast, conventional glycerophospholipids and triglycerides are triesters. Structural types include:

  • Ether phospholipids: phospholipids are known to have ether-linked "tails" instead of the usual ester linkage.
    • Ether on sn-1, ester on sn-2: "ether lipids" in the context of bacteria and eukaryotes refer to this class of lipids. Compared to the usual 1,2-diacyl-sn-glycerol (DAG), the sn-1 linkage is replaced with an ester bond.

Based on whether the sn-1 lipid is unsaturated next to the ether linkage, they can be further divided into alkenyl-acylphospholipids ("plasmenylphospholipid", 1-0-alk-1’-enyl-2-acyl-sn-glycerol) and alkyl-acylphospholipids ("plasmanylphospholipid"). This class of lipids have important roles in human cell signaling and structure.

View the full Wikipedia page for Ether lipid
↑ Return to Menu

Ester in the context of Fatty acid

In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids (up to 70% by weight) in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and important structural components for cells.

View the full Wikipedia page for Fatty acid
↑ Return to Menu

Ester in the context of Vitamin A

Vitamin A is a fat-soluble vitamin that is an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinyl esters, and several provitamin (precursor) carotenoids, most notably β-carotene (beta-carotene). Vitamin A has multiple functions: growth during embryo development, maintaining the immune system, and healthy vision. For aiding vision specifically, it combines with the protein opsin to form rhodopsin, the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision.

Vitamin A occurs as two principal forms in foods: A) retinoids, found in animal-sourced foods, either as retinol or bound to a fatty acid to become a retinyl ester, and B) the carotenoids α-carotene (alpha-carotene), β-carotene, γ-carotene (gamma-carotene), and the xanthophyll beta-cryptoxanthin (all of which contain β-ionone rings) that function as provitamin A in herbivore and omnivore animals which possess the enzymes that cleave and convert provitamin carotenoids to retinol. Some carnivore species lack this enzyme. The other carotenoids do not have retinoid activity.

View the full Wikipedia page for Vitamin A
↑ Return to Menu

Ester in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

View the full Wikipedia page for Acetate
↑ Return to Menu

Ester in the context of Interstellar ice

Interstellar ice consists of grains of volatiles in the ice phase that form in the interstellar medium. Ice and dust grains form the primary material out of which the Solar System was formed. Grains of ice are found in the dense regions of molecular clouds, where new stars are formed. Temperatures in these regions can be as low as 10 K (−263 °C; −442 °F), allowing molecules that collide with grains to form an icy mantle. Thereafter, atoms undergo thermal motion across the surface, eventually forming bonds with other atoms. This results in the formation of water and methanol. Indeed, the ices are dominated by water and methanol, as well as ammonia, carbon monoxide and carbon dioxide. Frozen formaldehyde and molecular hydrogen may also be present. Found in lower abundances are nitriles, ketones, esters and carbonyl sulfide. The mantles of interstellar ice grains are generally amorphous, becoming crystalline only in the presence of a star.

The composition of interstellar ice can be determined through its infrared spectrum. As starlight passes through a molecular cloud containing ice, molecules in the cloud absorb energy. This adsorption occurs at the characteristic frequencies of vibration of the gas and dust. Ice features in the cloud are relatively prominently in this spectra, and the composition of the ice can be determined by comparison with samples of ice materials on Earth. In the sites directly observable from Earth, around 60–70% of the interstellar ice consists of water, which displays a strong emission at 3.05 μm from stretching of the O–H bond.

View the full Wikipedia page for Interstellar ice
↑ Return to Menu

Ester in the context of Silicate

A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula [SiO
4−x
]
n
, where 0 ≤ x < 2. The family includes orthosilicate SiO4−4 (x = 0), metasilicate SiO2−3 (x = 1), and pyrosilicate Si2O6−7 (x = 0.5, n = 2). The name is also used for any salt of such anions, such as sodium metasilicate; or any ester containing the corresponding chemical group, such as tetramethyl orthosilicate. The name "silicate" is sometimes extended to any anions containing silicon, even if they do not fit the general formula or contain other atoms besides oxygen; such as hexafluorosilicate [SiF6]. Most commonly, silicates are encountered as silicate minerals.

For diverse manufacturing, technological, and artistic needs, silicates are versatile materials, both natural (such as granite, gravel, and garnet) and artificial (such as Portland cement, ceramics, glass, and waterglass).

View the full Wikipedia page for Silicate
↑ Return to Menu

Ester in the context of Fat

In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food.

The term often refers specifically to triglycerides (triple esters of glycerol), that are the main components of vegetable oils and of fatty tissue in animals; or, even more narrowly, to triglycerides that are solid or semisolid at room temperature, thus excluding oils. The term may also be used more broadly as a synonym of lipid—any substance of biological relevance, composed of carbon, hydrogen, or oxygen, that is insoluble in water but soluble in non-polar solvents. In this sense, besides the triglycerides, the term would include several other types of compounds like mono- and diglycerides, phospholipids (such as lecithin), sterols (such as cholesterol), waxes (such as beeswax), and free fatty acids, which are usually present in human diet in smaller amounts.

View the full Wikipedia page for Fat
↑ Return to Menu

Ester in the context of Cetyl palmitate

Hexadecyl hexadecanoate, also known as cetyl palmitate, is the ester derived from hexadecanoic acid and 1-hexadecanol. This white waxy solid is the primary constituent of spermaceti, the once highly prized wax found in the skull of sperm whales. Cetyl palmitate is a component of some solid lipid nanoparticles.

Stony corals, which build the coral reefs, contain large amounts of cetyl palmitate wax in their tissues, which may function in part as an antifeedant.

View the full Wikipedia page for Cetyl palmitate
↑ Return to Menu

Ester in the context of Wax ester

A wax ester (WE) is an ester of a fatty acid and a fatty alcohol. Wax esters are the main components of three commercially important waxes: carnauba wax, candelilla wax, and beeswax.

Wax esters are formed by combining one fatty acid with one fatty alcohol:

View the full Wikipedia page for Wax ester
↑ Return to Menu

Ester in the context of Adipic acid

Adipic acid or hexanedioic acid is an organic compound with the chemical formula C6H10O4. It is a white crystalline powder at standard temperature and pressure. From an industrial perspective, it is the most important dicarboxylic acid at about 2.5 billion kilograms produced annually, mainly as a precursor for the production of nylon. Adipic acid otherwise rarely occurs in nature, but it is known as manufactured E number food additive E355. Salts and esters of adipic acid are known as adipates.

View the full Wikipedia page for Adipic acid
↑ Return to Menu

Ester in the context of Chemical group

In organic chemistry, a functional group is any substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

A functional group is a group of atoms in a molecule with distinctive chemical properties, regardless of the other atoms in the molecule. The atoms in a functional group are linked to each other and to the rest of the molecule by covalent bonds. For repeating units of polymers, functional groups attach to their nonpolar core of carbon atoms and thus add chemical character to carbon chains. Functional groups can also be charged, e.g. in carboxylate salts (−COO), which turns the molecule into a polyatomic ion or a complex ion. Functional groups binding to a central atom in a coordination complex are called ligands. Complexation and solvation are also caused by specific interactions of functional groups. In the common rule of thumb "like dissolves like", it is the shared or mutually well-interacting functional groups which give rise to solubility. For example, sugar dissolves in water because both share the hydroxyl functional group (−OH) and hydroxyls interact strongly with each other. Plus, when functional groups are more electronegative than atoms they attach to, the functional groups will become polar, and the otherwise nonpolar molecules containing these functional groups become polar and so become soluble in some aqueous environment.

View the full Wikipedia page for Chemical group
↑ Return to Menu

Ester in the context of Stearic acid

Stearic acid (/ˈstɪərɪk/ STEER-ik, /stiˈærɪk/ stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a soft waxy solid with the formula CH3(CH2)16COOH. The triglyceride derived from three molecules of stearic acid is called stearin. Stearic acid is a prevalent fatty acid in nature, found in many animal and vegetable fats, but is usually higher in animal fat than vegetable fat. It has a melting point of 69.4 °C (156.9 °F)  °C and a pKa of 4.50.

Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its glycerol ester, stearic acid is one of the most common saturated fatty acids found in nature and in the food supply, following palmitic acid. Dietary sources of stearic acid include meat, poultry, fish, eggs, dairy products, and foods prepared with fats; beef tallow, lard, butterfat, cocoa butter, and shea butter are rich fat sources of stearic acid.

View the full Wikipedia page for Stearic acid
↑ Return to Menu

Ester in the context of Palmitate

Palmitic acid (hexadecanoic acid in IUPAC nomenclature) is a fatty acid with a 16-carbon chain. It is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D ratio (the total number of carbon atoms to the number of carbon-carbon double bonds) is 16:0. It is a major component of palm oil from the fruit of Elaeis guineensis (oil palms), making up to 44% of total fats. Meats, cheeses, butter, and other dairy products also contain palmitic acid, amounting to 50–60% of total fats.

Palmitates are the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4). Major sources of C16:0 are palm oil, palm kernel oil, coconut oil, and milk fat.

View the full Wikipedia page for Palmitate
↑ Return to Menu

Ester in the context of Monoglyceride

Monoglycerides (also: acylglycerols or monoacylglycerols) are a class of glycerides which are composed of a molecule of glycerol linked to a fatty acid via an ester bond. As glycerol contains both primary and secondary alcohol groups two different types of monoglycerides may be formed; 1-monoacylglycerols where the fatty acid is attached to a primary alcohol, or a 2-monoacylglycerols where the fatty acid is attached to the secondary alcohol.

View the full Wikipedia page for Monoglyceride
↑ Return to Menu