Silicate minerals in the context of "Silicate"

Play Trivia Questions online!

or

Skip to study material about Silicate minerals in the context of "Silicate"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Silicate minerals in the context of Silicate

A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula [SiO
4−x
]
n
, where 0 ≤ x < 2. The family includes orthosilicate SiO4−4 (x = 0), metasilicate SiO2−3 (x = 1), and pyrosilicate Si2O6−7 (x = 0.5, n = 2). The name is also used for any salt of such anions, such as sodium metasilicate; or any ester containing the corresponding chemical group, such as tetramethyl orthosilicate. The name "silicate" is sometimes extended to any anions containing silicon, even if they do not fit the general formula or contain other atoms besides oxygen; such as hexafluorosilicate [SiF6]. Most commonly, silicates are encountered as silicate minerals.

For diverse manufacturing, technological, and artistic needs, silicates are versatile materials, both natural (such as granite, gravel, and garnet) and artificial (such as Portland cement, ceramics, glass, and waterglass).

↓ Explore More Topics
In this Dossier

Silicate minerals in the context of Plagioclase

Plagioclase (/ˈplæ(i)əˌkls, ˈpl-, -ˌklz/ PLAJ-(ee)-ə-klayss, PLAYJ-, -⁠klayz) is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.

Plagioclase is a major constituent mineral in Earth's crust and is consequently an important diagnostic tool in petrology for identifying the composition, origin and evolution of igneous rocks. Plagioclase is also a major constituent of rock in the highlands of the Moon. Analysis of thermal emission spectra from the surface of Mars suggests that plagioclase is the most abundant mineral in the crust of Mars.

↑ Return to Menu

Silicate minerals in the context of Ore

Ore is natural rock or sediment that contains one or more valuable minerals, typically including metals, concentrated above background levels, and that is economically viable to mine and process. Ore grade refers to the concentration of the desired material it contains. The value of the metals or minerals a rock contains must be weighed against the cost of extraction to determine whether it is of sufficiently high grade to be worth mining and is therefore considered an ore. A complex ore is one containing more than one valuable mineral.

Minerals of interest are generally oxides, sulfides, silicates, or native metals such as copper or gold. Ore bodies are formed by a variety of geological processes generally referred to as ore genesis and can be classified based on their deposit type. Ore is extracted from the earth through mining and treated or refined, often via smelting, to extract the valuable metals or minerals. Some ores, depending on their composition, may pose threats to health or surrounding ecosystems.

↑ Return to Menu

Silicate minerals in the context of Substrate (marine biology)

Substrate is the earthy material that forms or collects at the bottom of an aquatic habitat. It is made of sediments that may consist of:

  • Silt – A loose, granular material with mineral particles 0.5 mm or less in diameter.
  • Clay – A smooth, fine-grained material made of fine particles of hydrous aluminium phyllosilicate minerals (such as kaolinite).
  • Mud – A mixture of water with silt, clay, or loam.
  • Sand – Mineral particles between 0.06 and 2 mm in diameter.
  • Granule – Between 2 and 4 mm in diameter.
  • Pebble – Between 4 – 64 mm in diameter.
  • Cobble – between 6.4 and 25.6 cm in diameter
  • Boulder – more than 25.6 cm in diameter.
  • Other, assorted organic matter, detritus.

Stream substrate can affect the life found within the stream habitat. Muddy streams generally have more sediment in the water, reducing clarity. Clarity is one guide to stream health.

↑ Return to Menu

Silicate minerals in the context of Felsic

In geology, felsic is a modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz. It is contrasted with mafic rocks, which are richer in magnesium and iron. Felsic refers to silicate minerals, magma, and rocks which are enriched in the lighter elements such as silicon, oxygen, aluminium, sodium, and potassium. Molten felsic magma and lava is more viscous than molten mafic magma and lava. Felsic magmas and lavas have lower temperatures of melting and solidification than mafic magmas and lavas.

Felsic rocks are usually light in color and have specific gravities less than 3. The most common felsic rock is granite. Common felsic minerals include quartz, muscovite, orthoclase, and the sodium-rich plagioclase feldspars (albite-rich).

↑ Return to Menu

Silicate minerals in the context of Orthoclase

Orthoclase, or orthoclase feldspar (endmember formula KAlSi3O8), is an important tectosilicate mineral which forms igneous rock. The name is from the Ancient Greek for "straight fracture", because its two cleavage planes are at right angles to each other. It is a type of alkali feldspar, also known as potassium feldspar or K-spar. The gem known as moonstone (see below) is largely composed of orthoclase.

↑ Return to Menu

Silicate minerals in the context of Amphibole

Amphibole (/ˈæmfəbl/ AM-fə-bohl) is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

↑ Return to Menu

Silicate minerals in the context of Hornblende

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

The general formula is (Ca,Na)2−3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2.

↑ Return to Menu

Silicate minerals in the context of Biotite

Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula K(Mg,Fe)3AlSi3O10(F,OH)2. It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite and eastonite. Biotite was regarded as a mineral species by the International Mineralogical Association until 1998, when its status was changed to a mineral group. The term biotite is still used to describe unanalysed dark micas in the field. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

Members of the biotite group are sheet silicates. Iron, magnesium, aluminium, silicon, oxygen, and hydrogen form sheets that are weakly bound together by potassium ions. The term "iron mica" is sometimes used for iron-rich biotite, but the term also refers to a flaky micaceous form of haematite, and the field term Lepidomelane for unanalysed iron-rich Biotite avoids this ambiguity. Biotite is also sometimes called "black mica" as opposed to "white mica" (muscovite) – both may form in the same rocks, and in some instances side by side.

↑ Return to Menu

Silicate minerals in the context of Pyroxene

The pyroxenes (commonly abbreviated Px) are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents ions of calcium (Ca), sodium (Na), iron (Fe(II)) or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron (Fe(II) or Fe(III)). Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

The name pyroxene is derived from the Ancient Greek words for 'fire' (πυρ, pur) and 'stranger' (ξένος, xénos). Pyroxenes were so named due to their presence in volcanic lavas, where they are sometimes found as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name meaning "fire stranger". However, they are simply early-forming minerals that crystallized before the lava erupted.

↑ Return to Menu